

production through gluon fusion LHC Higgs Working Group off-shell meeting 2024

Bakul Agarwal, Karlsruhe Institute of Technology (with Stephen Jones, Matthias Kerner, and **Andreas von Manteuffel)** Based on https://arxiv.org/abs/2404.05684

THE UNIVERSITY of EDINBURGH

Complete Next-to-Leading-Order QCD corrections to ZZ

Motivation

Precision measurements:

Background to Higgs production through gluon fusion [CMS 2018] [ATLAS 2020]

Higgs Width:

Indirect constraints on Higgs width through off-shell Higgs production [ATLAS 2018] [CMS 2019] [Caola, Melnikov 2013] [Campbell, Ellis, Williams 2013] **BSM** searches:

Searches for heavy diboson resonances decaying to 4 lepton final states [ATLAS 2020] [CMS 2023]

Anomalous couplings:

Constrain anomalous ttZ, triple gauge couplings [ATLAS 2023]

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

Motivation

$gg \rightarrow ZZ$ at the LHC:

Loop induced; formally NNLO for $pp \rightarrow ZZ$ (starting at $O(\alpha_S^2)$)

Large contribution due to high gluon luminosity; $\sim 60\%$ of the total NNLO COrrection [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)]

 $gg \rightarrow ZZ$ at NLO (massless quarks in the loop) increases total $pp \rightarrow ZZ$ by ~ 5% [Grazzini, Kallweit, Wiesemann, Yook (2018)]

Top quark effects expected to be significant, especially for longitudinal modes due to Goldstone boson equivalence theorem

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

\implies Need a full NLO calculation

NLO Calculation

Next-to-Leading Order cross-section: $d\sigma_{NLO} = d\sigma_B + d\sigma_V + d\sigma_R$

Two-loop Amplitude

Massless quarks (A_I)

[von Manteuffel, Tancredi (2015)] [Caola, Henn, Melnikov, Smirnov, Smirnov (2015)]

Anomaly type (**B**)

[Kniehl, Kühn (1990)] [Cambell, Ellis, Zanderighi (2007)] [Cambell, Ellis, Czakon, Kirchner (2016)]

Massive (A_h)

[BA, Jones, von Manteuffel (2020)] [Brønnum-Hansen, Wang (2021)]

And for various expansions: [Melnikov, Dowling (2015)] [Caola et al (2016)] [Cambell, Ellis, Czakon, Kirchner (2016)] [Gröber, Maier, Rauh (2019)] [Davies, Mishima, Steinhauser, Wellmann [DeGrassi, Gröber, Vitti (2024)] (2020)]

Higgs mediated (\mathbf{C})

[Spira et al (1995)] [Harlander & Kant (2005)] [Anastasiou et al (2006)] [Bonciani et al (2006)]

Write the UV and IR finite amplitudes (after UV renormalisation and IR subtraction respectively) as:

$$\mathscr{M}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}^{fin} = \left(\frac{\alpha_{S}}{2\pi}\right)\mathscr{M}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}^{(1)} + \left(\frac{\alpha_{S}}{2\pi}\right)^{2}\mathscr{M}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}^{(2)} + O\left(\alpha_{S}\right)^{3}$$

Define 1-loop squared and interference between 1-loop and 2-loop amplitudes:

$$\mathcal{V}^{(1)}_{\lambda_1\lambda_2\lambda_3\lambda_4}$$

$$\mathscr{V}^{(2)}_{\lambda_1\lambda_2\lambda_3\lambda_4} = 2 \operatorname{Re}\left(\mathscr{M}^{*(1)}_{\lambda_1\lambda_2\lambda_3\lambda_4}\mathscr{M}^{(2)}_{\lambda_1\lambda_2\lambda_3\lambda_4}\right)$$

Note that in the following results, only the pure top-quark contributions are included (i.e. no Higgs mediated diagrams or massless internal quarks)

$$= \left| \mathcal{M}_{\lambda_1 \lambda_2 \lambda_3 \lambda_4}^{(1)} \right|^2$$

Numerical Evaluation

Integration strategy

 $\mathcal{M}^{(2)}_{\lambda_1\lambda_2\lambda_3\lambda_4}$ instead of each integral [Borowka et al (2016)]

$$T = \Sigma t_i$$

Quasi-Monte Carlo algorithm for quadrature [Li, Wang, Zhao (2015)] [Borowka et al (2017)]

Request per-cent precision on each helicity amplitude (and ~10% on form factors A_i); much better precision obtained usually

- Helicity amplitudes $\mathcal{M}^{(2)}_{\lambda_1\lambda_2\lambda_3\lambda_4}$ written as a linear combination of ~ $O(10^4)$ integrals after sector decomposition i.e. each sector of a master integral is considered and evaluated separately
- Number of evaluations for each integral set dynamically to minimise the evaluation time for T: Total integration time

+
$$\lambda (\sigma^2 - \Sigma_i \sigma_i^2)$$

- t_i : Integration time for integral j
- σ : Required precision
- σ_i : Estimated precision for integral *i*
- λ : Lagrange Multiplier

Numerical Evaluation

Use the born calculation (with only top quarks) to generate unweighted events to sample the virtual corrections (~3000 points)

Good numerical stability in most regions of phase space, in particular around the top-quark threshold

Runtimes in O(10) min for large part of the phase space with expected difficulties for $|cos\theta| \sim 1$ (very small p_T)

Better than per-mille precision for most of the phase-space

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

Numerical Evaluation

Good numerical stability in most regions of phase space, in particular around the top-quark threshold (except for small p_T)

Runtimes in O(10) min for large part of the phase space with expected difficulties for very small p_T

Better than per-mille precision for most of the phase-space

Can access high energy and high p_T region without much difficulty, but very high energy $(\sqrt{s} > 2 TeV)$ challenging

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

Comparison to expansions

Comparison of \sqrt{s} dependence of the unpolarised interference with expansion results at fixed $\cos \theta = -0.1286$. Exact results from [BA, Jones, von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima, Steinhauser, Wellmann (2020)] (see also [Davies, Mishima, Schönwald, Steinhauser (2023)]). Error bars for the exact result are plotted but they are too small to be visible. Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

Comparison to expansions

For previous results, " q_T " subtraction scheme Transformation between Catani's original scheme and q_T scheme $A_{i}^{(2),fin,Catani} = A_{i}^{(2),fin,q_{T}} + \Delta I_{1}A_{i}^{(1),fin}$ $\Delta I_1 = -\frac{1}{2}\pi$

qualitative behaviour

Relative comparisons highly dependent on IR scheme

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

11

$$\tau^2 C_A + i\pi\beta_0 \sim 15$$

For interference terms, 1-loop result multiplied by $\sim 30 =$ Leads to a very different

Comparison to expansions

Traditional Catani Scheme

Comparison of \sqrt{s} dependence of the polarised interference with expansion results at fixed $\cos \theta = -0.1286$. Exact results from [BA, Jones, von Manteuffel (2020)]. Expansion and Padé results from [Davies, Mishima, Steinhauser, Wellmann (2020)] (see also [Davies, Mishima, Schönwald, Steinhauser (2023)]).

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

" q_T " scheme

Higgs and Top quark

contributions for massive quarks and Higgs mediated diagrams

Higgs and Top quark

Comparison of Born $|\mathcal{M}|^2$ against \sqrt{s} for different contributions

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

Higgs and Top quark

Comparison of ratios of different interferences (normalised to full) at 1-loop level against $m_{\rm ZZ}$

Delicate cancellations between toponly and Higgs mediated contributions

Comparison of ratios of different interferences (normalised to full) at 2-loop level against m_{ZZ}

Results: Complete NLO Corrections

Top-only contributions:

$$\sigma_{\text{LO}}^{\text{A}_{h}} = 19.00^{+29.4\%}_{-21.4\%} \text{ fb}$$

 $\sigma_{\text{NLO}}^{\text{A}_{h}} = 34.46(6)^{+16.4\%}_{-14.4\%} \text{ fb}$

Including all contributions:

$$\sigma_{\rm LO} = 1316^{+23.0\%}_{-18.0\%} \text{ fb}$$

$$\sigma_{\rm NLO} = 2275(12)^{+14.0\%}_{-12.0\%} \text{ fb} \qquad \text{(Nur}$$

~2% decrease in full NLO cross-section after including top quark and Higgs contributions

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

mber in parentheses s the Monte-carlo error)

Results: Complete NLO Corrections

Top-quark-only contributions to the ZZ invariant mass distribution in pp collisions. The absolute value of the two-loop virtual correction is shown separately in the qT, Catani-Seymour (CS), and Catani (C) schemes. The dashed curve represents an approximate NLO result obtained by rescaling the massive Born amplitude with the massless K-factor. Plot from [BA, Jones, Kerner, von Manteuffel (2024)]

Bakul Agarwal (University of Edinburgh) - LHC Higgs Working Group Off-shell meeting 2024 - 19/11/2024

Results: Complete NLO Corrections

Diboson invariant mass distribution for gluon- initiated ZZ production at the LHC. The Solid curves represent the LO and NLO results with complete massless and massive contributions, including Higgs-mediated diagrams. The dashed curve represents an approximate NLO result obtained as described in the text. Plot from [BA, Jones, Kerner, von Manteuffel (2024)]

Top mass scheme uncertainty

schemes. For $\overline{\text{MS}}$ scheme, we use $m_t(2m_t^{\text{OS}}) = 154.6 \text{ GeV}$

At Leading Order:

$$\sigma_{LO}^{OS} = 18.97 \text{ fb}$$

 $\sigma_{LO}^{\overline{MS}} = 20.62 \text{ fb} \implies \sim 9\%$

loop amplitudes, which are not available with symbolic top mass dependence.

Catani scheme to get a better estimate.

We can estimate the mass uncertainty by comparing the numbers between on-shell and MS

- b increase
- At NLO, we can estimate the uncertainty by varying everything except the bare 2-
- However, the impact of these finite 2-loop amplitudes can be reduced by working in

Top mass scheme uncertainty

Significant reduction in the mass scheme uncertainty at NLO (similar to the effect observed in $gg \rightarrow hh$

	OS	MS	% Change
Born	18.97	20.62	8.7
Reals (Catani)	14.89	16.33	
Virtuals (Catani)	0.59	-1.32	
Reals (qT)	5.80	6.22	
Virtuals (qT)	9.65	8.64	
NLO (Catani)	34.48	35.90	4.1
NLO (qT)	34.45	35.75	3.7

Difference between the two schemes gives an estimate of the "correctness" of our mass scheme uncertainty

Conclusions

to get good statistics for distributions

threshold, at high invariant mass and forward scattering

Significant top-quark only corrections (~100%)

Great impact due to the choice of IR scheme on virtual (and reals)

unpolarised cross-section

of the estimate

- Efficient integration strategy using sector decomposition to minimise the total integration time; able
- Numerically very stable in most regions of phase-space, even close to top-quark pair production

- Existing approximations based on rescaling the massive Born by massless k-factor quite good for
- Extreme cancellations between Higgs and Top-quark contributions; sensitive to exact SM couplings
- Estimate of top-mass uncertainty; difference between Catani and qT schemes assesses the stability

