

Run: 304128 Event: 1725860339 2016-07-20 01:48:07 CEST

Vector Boson Fusion Offshell Higgs Measurements

Theory considerations from the experiments

Robin Hayes LHCHWG Offshell Subgroup Meeting Nov. 19 2024 $H^* \rightarrow VV$ production has been used at the LHC to probe offshell Higgs production and constrain the Higgs width.

Dominant channel is $gg \rightarrow H^* \rightarrow VV$ (ggF), but electroweak $qq \rightarrow H^* \rightarrow VVqq$ (VBF) is increasingly well-measured.

Offshell VBF Higgs signal and continuum VBS background interfere.

In this talk:

- Glimpse of current offshell Higgs VBF measurements
 Sensitivity and strategy
- Modelling VBF in analysis

 Generators and uncertainties
- Moving forward: effect of higher-order corrections on VBF
 How can we improve our current treatment?

Hope to set the stage by discussing experimental sensitivity and needs, ahead of next talk covering theory status.

Recent Offshell Higgs Measurements

Start with a quick look at recent measurement, to give a sense of experimental sensitivity:

CMS

- ggF and VBF production
- $H \rightarrow ZZ \rightarrow 2\ell 2\nu$ and 4ℓ Run 2 <u>paper</u> (and update of onshell measurement in <u>HIG-21-019</u>)

 Γ_{H} =3.2(+2.4,–1.7) MeV at 68% CL μ_{VBF} =0.90(+0.9,–0.59) at 68% CL μ_{ggF} =0.62(+0.68,–0.45) at 68% CL

Recent Offshell Higgs Measurements

Start with a quick look at recent measurement, to give a sense of experimental sensitivity:

Key takeaway: Offshell VBF Higgs being studied by both experiments in all recent measurements, with signal strength measured with $\vartheta(50 - 100\%)$ precision.

- Comparable to ggF, despite $1/10^{\text{th}}$ the cross-section \rightarrow equally important for width constraints.
- Some key advantages experimentally and theoretically:
 - Distinctive production mode features \rightarrow especially important for $H \rightarrow WW \rightarrow lvlv$
 - \circ Different couplings than ggF \rightarrow no assumptions needed on BSM physics on top loop.

Targeting VBF in the Measurements

VBF signal typically targeted via a mix of **cuts** and **machine learning**.

Typical cuts include:

- **b-veto** for top background rejection
- Invariant mass cuts to select offshell phase space
- Mass or kinematic cuts to select leptons from V decays.
- MET (for $2l2\nu$ final states)
- Jet multiplicity division; 2j targets VBF
- VBF topological cuts, eg. $\Delta \eta_{ii}$, central jet veto, outside lepton veto.

VBF signal typically targeted via a mix of cuts and machine learning.

4L CONF note

Variable	Definition
$m_{4\ell}$	quadruplet mass
m_{Z1}	Z_1 mass
m_{Z2}	Z_2 mass
$\cos \theta^*$	cosine of the Higgs boson decay angle $[\mathbf{q}_1 \cdot \mathbf{n}_z / \mathbf{q}_1]$
$\cos \theta_1$	cosine of the Z ₁ decay angle $[-(\mathbf{q}_2) \cdot \mathbf{q}_{11}/(\mathbf{q}_2 \cdot \mathbf{q}_{11})]$
$\cos \theta_2$	cosine of the Z ₂ decay angle $\left[-(\mathbf{q}_1) \cdot \mathbf{q}_{21}/(\mathbf{q}_1 \cdot \mathbf{q}_{21})\right]$
Φ_1	Z_1 decay plane angle $[\cos^{-1}(\mathbf{n}_1 \cdot \mathbf{n}_{sc}) (\mathbf{q}_1 \cdot (\mathbf{n}_1 \times \mathbf{n}_{sc})/(\mathbf{q}_1 \cdot \mathbf{n}_1 \times \mathbf{n}_{sc})]$
Φ	angle between Z_1, Z_2 decay planes $[\cos^{-1}(\mathbf{n}_1 \cdot \mathbf{n}_2) (\mathbf{q}_1 \cdot (\mathbf{n}_1 \times \mathbf{n}_2)/(\mathbf{q}_1 \cdot \mathbf{n}_1 \times \mathbf{n}_2)]$
$p_T^{4\ell}$	quadruplet transverse momentum
$y^{4\ell}$	quadruplet rapidity
n _{jets}	number of jets in the event
m_{jj}	leading dijet system mass
$\Delta \eta_{jj}$	leading dijet system pseudorapidity
$\Delta \phi_{jj}$	leading dijet system azimuthal angle difference

Variables used in NN discriminant

Neural networks applied in several ways:

- Histogram-based analyses use NNs as final discriminants and to classify events into SRs.
- SBI-based analysis performs unbinned analysis using likelihood built from density ratios.
- In either case: NNs generally rely on wide range of lepton and jet kinematic features.

Modelling Offshell Higgs

paper

Monte Carlo simulations are crucial for optimizing cuts, and training NNs, and predicting signal yields.

ATLAS and CMS strategies differ a bit here:

- 1. Both: Generate S with available MC generator
- 2a. ATLAS: With same generator, also generate B and I (or SBI, SBI20) for VV sample with S, B and I contributions
 2b. CMS: Use matrix-element reweighting (MELA) for VV sample with S, B and I contributions.
- **3.** Both: Reweight S, B, I to higher order, differentially if available, or inclusively.

VBF Modelling Details

CMS

- Powheg (NLO QCD, LO EW) + JHUGen decay for wide-resonance signals with pole masses from 125 GeV to 3 TeV.
- Reweight for B and I with MELA package (JHUGen and MCFM LO MEs)

ATLAS

- MadGraph (LO QCD, LO EW) + Pythia8 for B, SBI, SBI20
 - SBI20 = offshell cross-section and width scaled by factor of 20 → onshell contribution suppressed.
 - Can't generate S sample alone due to diagrams beyond s-channel one.

No further higher-order corrections applied by either experiment.

Theory uncertainties on VBF capture the effect of:

- **Parton shower:** Internal weight variations (ISR, FSR, A14 tune parameters).
- QCD scale variations: 7-point variations of μ_R , μ_F
- **PDF**+ α_S : standard deviation of NNPDF3.0 set, and α_S variations.

Some details:

- All uncertainties evaluated at reco-level (after detector simulation).
- Impact evaluated separately for SBI, SBI20 and B samples.
- NPs correlated across all three samples.

Measurement of $\mu_{offshell}$ and Γ_H are generally dominated by:

- Statistics
- ggF parton shower uncertainty.
- Final-state-dependent uncertainties: background theory, experimental uncertainties.

4L CONF note

Process	Uncertainty	Final State	Value (%)	
2-jet Signal Region				
$q\bar{q} \rightarrow ZZ$	QCD Scale	4ℓ	18-26	
$q\bar{q} \rightarrow ZZ$	QCD Scale	2ℓ2v	8-32	
$gg \rightarrow H^* \rightarrow ZZ$	Parton Shower	4ℓ	27	
$gg \rightarrow H^* \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	14-18	
$gg \rightarrow ZZ$	Parton Shower	4 <i>l</i>	38	
$gg \rightarrow ZZ$	QCD Scale	2 <i>ℓ</i> 2 <i>ν</i>	18-20	
WZ + 2j	QCD Scale	2 <i>ℓ</i> 2 <i>ν</i>	20-22	
$q\bar{q} \rightarrow ZZ + 2j$	QCD Scale	4 <i>l</i>	8-14	
$q\bar{q} \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	8-16	

Effect of VBF theory

uncertainties are more important in dedicated phase space.

- QCD scale tends to be largest.
- But still subleading compared to other uncertainty sources.

Updating VBF Theory Treatment

- VBF offshell Higgs measurements are becoming less stat-limited and more sensitive.
 → Modelling matters more and more.
- Current MC simulations are at LO or NLO QCD, and LO EW.
 → What is the effect of missing higher-order corrections on VBF S, B and I?

Look at recent HO calculations for $qq \rightarrow (H^*) \rightarrow VVqq$ for a sense of the impact:

JHEP06(2022)098

NLO QCD and EW corrections to vector-boson scattering into W^+W^- at the LHC

Ansgar Denner, Robert Franken, Timo Schmidt and Christopher Schwan

JHEP11(2020)110

NLO QCD and EW corrections to vector-boson scattering into ZZ at the LHC

Ansgar Denner,^a Robert Franken,^a Mathieu Pellen^b and Timo Schmidt^a

Robert Franken will speak about this next; I will just briefly motivate experiments' interest.

NLO QCD and EW corrections on the full process are sizable in VBS phase spaces:

VBS W^+W^- :

- Higgs resonance included: -11.4% (EW), -5.1% (QCD)
- Higgs resonance cut out: -13.2% (EW), -0.4% (QCD)

VBS ZZ:

 closest to our offshell analyses; more later.

- mJJ>100 GeV: -15.9% (EW), 23.6% (QCD)
- mJJ>500 GeV: -17.6% (EW), 0.1% (QCD)

Impact of H.O. Corrections on VBF Offshell

How much would the **norm** and **shape** components of such a correction matter?

Normalization change (overall xsec): probably not so much.

- Scaling signal down could hurt a little (less of already-small signal).
 Background and interference would also be scaled down (discussion point...).
- (If full correction not available): Applying extra uncertainty to account for effect of missing NLO EW corrections on xsec would have a small effect:
 - Leading ggF theory uncertainties are 20-40%, but stat uncertainties still dominate our measurements for now. And VBF is even more stats-limited.
 - Current largest VBF theory uncertainties are ~10%, similar size to NLO EW correction, and they don't rank highly.

Impact of H.O. Corrections on VBF Offshell

How much would the **norm** and **shape** components of such a correction matter?

 m_{VV} shape correction: likely more, but hard to say.

- Shape information is crucial for distinguishing S (higher mVV) from B and I (lower mVV).
- S and I dominate sensitivity over different m_{VV} and μ ranges \rightarrow altering their yields and shapes has non-trivial affect on sensitivity.

Expected event yield shows deficit or excess across different mVV ranges depending on mu hypothesis. **Conclusion:** probably not a large effect *yet*, but somewhat non-trivial to say for sure, and will be increasingly important as stats and sensitivity improve.

Some considerations toward applying (or checking) these corrections in offshell analyses:

- NLO corrections calculated for S, B and I inclusively.
 - We separate these (via templates and via selections) \rightarrow corrections equally applicable to all?
- VBS phase spaces not identical to those of either analysis
 - $\circ~$ eg. no central jet veto in WW paper
- m_{VV} dependence is large, so corrections should likely be applied differentially.
 - Practically, how to do this? Implementation in FO calculator, application at truth-level?
- The $qq \rightarrow VVqq$ background-only process enters onshell $H \rightarrow VV$ analyses.
 - \circ Ensure consistent treatment \rightarrow affects offshell-onshell width combinations.

How to move forward?

Lots of questions on previous slide.Arising from discussions with LHCHWG offshell SGCs
and experimentalists on ATLAS

Some thoughts on moving toward answers (and makes sense to discuss more after Robert's talk):

- Would it be possible to have the implementation of these corrections in either a) a FO calculator (could apply mVV corrections to nominal sample at truth-level), or b) a generator matched to PS (allows running the sample through whole analysis including NN)?
- Alternatively, would authors be willing to: 1) re-run calculations with more typical offshell analysis selections, 2) isolate S, B and I components, and 3) provide m_{VV} -differential corrections in usable form?
- NLO QCD corrections for VBF high-mass signal available in Powheg (used by CMS) and MadGraph (but tricky/computationally-expensive). NLO EW available as automated corrections in <u>Sherpa+Recola</u> – is this usable/recommended for VBF offshell Higgs?

- Offshell Higgs analyses are becoming increasingly sensitive to VBF production.
- Want to make sure we are correctly modelling signal, background and interference for this process.
- Looking forward to discussion now and after the next talk.

VBS measurements performed in ATLAS and CMS. How do they treat higher-order corrections?

Observation of EW W+W- [STDM-2022-06 and SMP-21-001-pas]

- ATLAS: Signal sample is NLO QCD, LO EW.
- CMS: Signal sample is LO QCD and EW.
- Neither reports any H.O corrections or related uncertainty.

Observation of EW ZZ [STDM-2017-19 and SMP-20-001]:

- ATLAS: Signal sample is NLO QCD, LO EW.
- CMS: Signal sample is LO QCD and EW
- Neither reports any H.O corrections or related uncertainty.

 W^+

W