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Welcome to SBU and BNL !

e Thank you very much for coming! Many have come a long way, we
appreciate it

Keep your badge on while at BNL

BNL and SBU have an anti-harassment policy, available on the website
Observe speed limits! Watch for humans !

Group photo: Today

REDWOOD splinter meetings will be in CDS Building (Bldg 725,
conference room A)

TIM :

e A discussion-oriented technical gathering

e We will keep live notes, at least for some of it, contributions

appreciated
e Mario will present TIM highlights at SW&C week

BNL Maps & Directions
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https://docs.google.com/document/d/1zW_UOhSGLmAoE2921aaioC9vY4JA9hoqmr5adS7nqiw/edit?tab=t.0
https://www.bnl.gov/maps/
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Brookhaven Supports Data-rich Experimental
and Computational Facilities and Programs

Relativistic Heavy lon Collider (RHIC): Supports nearly 2000 scientists worldwide RHIC — EIC Qﬁ e

Electron-lon Collider (EIC): Echelon0 and Echelon1 data storage and processing center, a new
paradigm in physics and frontier for data science*

Large Hadron Collider (LHC): Largest ATLAS Tier-1 center
Super KEKB: Tier-1 and RAW data storage center for high energy physics Belle Il experiment

Quantum chromodynamics (QCD): computing facilities for Brookhaven Lab, RIKEN, and U.S.
QCD communities LHC

QCD

National Synchrotron Light Source Il (NSLS-II): Newest and brightest synchrotron in the world;
supports a multitude of scientific research in academia, industry, and national security

Centetr f(_)rI Functional Nanomaterials (CFN): Combines theory and experiment to probe
materials

Accelerator Test Facility (ATF): User facility for for advanced accelerator and laser research NSLSI

Atmospheric Radiation Measurement (ARM) program: Partner in multi-site facility, operating its
external data center

CFN

G Brookhaven
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*)Torre’s talk tomorrow about ePIC/EIC computing
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CDS at Brookhaven Lab

Provides Brookhaven Lab with leading-edge computing capabilities that
enhance its ability to fulfill its mission today and into the future by:.

o Conducting mission-informed foundational research in computer science, applied
mathematics, and quantum information science

o Creating early hardware and software prototypes in close collaboration with other
Lab science directorates and the broader DOE community

o Providing computing and data services to enable research for the Lab’s broad
scientific user community through Scientific Computing and Data Facilities

o Acting as a coordination point for cross-cutting computer science, applied
mathematics, and computational science research at Brookhaven Lab

o Developing computing-oriented strategic initiatives for the Laboratory
o Being mapped to DOE-ASCR’s strategic directions, programs, and facilities.
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Scientific Computing and

Data Facilities Division

I L;\ Brookhaven
National Laborato ry




Scientific Computing and Data Facilities By the
Numbers

SCDF today is a leading computing center for high-throughput computing and scientific
data. SCDF supports high energy and nuclear experiments, as well as other Lab-based
and international projects, including EIC, LQCD, NSLS-II, CFN, BES, Worldwide LHC
Computing Grid (WLCG), and Open Science Grid (OSG).

One of the top-10 scientific data centers in the world

O  The largest NP and HEP data archive in the United States SCDF supports

O  ~300+ PB of data archived (exabytes by 2030) experiments throughout the

O 160+ PB on disks entire data collection and

O  The mass storage HPSS system is used in Data Carousel mode when processing cycle, including
data are actively migrated between disk and tape data analysis. The data
~2000 nodes (~175k CPU cores and 350 GPU) center serves 2000 users

from more than 20 projects

® additional 2200 nodes (~240k CPU cores will be deployed in 2025) and experiments

1.5 EB of data analyzed
BNL network externally connected to global network at 1.6 Tbps
Infrastructure: 59,000 sg-ft? data center began operations in 2021

k? Brookhaven
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Data Center Key Features

* Modular, scalable, and robust design: 9.6 MW of
ultimate IT payload capacity

* Currently, 3.6 MW (UPS/Generator) backed-up power available
* Additional 1.2 MW power block to be available in early FY26
* (Cooling with high-efficiency chillers and rear door heat exchangers

* Liquid (direct to chip/immersion) cooling ready for latest GPU-based IT
hardware deployment for Al, HPC, and Digital Twin applications

* Energy-efficient data center with 1.3 current PUE, aiming for 1.2 PUE with full IT
payload deployment

* Streamlined operations through Data Center Infrastructure Management
(DCIM), including node level electric billing, asset management, environmental
monitoring, and capacity planning

10
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“BNL-ATLAS Collaboration Ideas: Advancing Data Center Sustainability”
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https://indico.cern.ch/event/1472836/contributions/6330708/subcontributions/529800/attachments/2999772/5285950/ATLAS-%20BNL%20Collaboration%20-%20IL.pdf

sPHENIX: Newest Experiment in the RHIC Program

SPHE

|

| X

Completes the RHIC physics program

with a three-year run (2023-2025) Requires massive amounts of
resources to keep up with

experimental needs
e CPU deployment for RHIC in 2025

Unique dual-streaming at very high
rates (20 GB/s in aggregate)

e First stream to archival tape for grows ~79% to 160,736 computing
storage and backup cores

e Second stream to disk for near-real- e Tape archival storage estimated needs
time (preliminary) data analysis in the three-year run is ~0.5+ EB

e For reference, the total data currently
archived on tape at the SCDF is ~300+

PB
Experience builds know-how to support similar high-rate programs in the e Total C!ISk storage CapaCI_ty (for d_ata
future analysis) to be deployed in 2025 is
(i.e., ePIC at the EIC and ATLAS at the HL-LHC). ~87 PB

I k? Brookhaven
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Projects
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Two New Research Centers

Digital Twins Institute

Computing for National Security Meifeng Lin, Director
Adolfy Hoisie, Director’ Vanessa Lopez-Marrero, Chief
Scientist
e (Coordinate efforts across e (Coordinate digital twin research
different departments and and development (R&D)
directorates with a range of e Develop new funding
Sl opportunities

I L:.‘ Brookhaven
National Laboratory 13



CDS and NPP Projects*

DOE ASCR, BNL LDRD, BNL PD, BER, SciDAC and Quantum Computing selected
projects
» Hierarchical, Al-Enabled Modeling of Future Supercomputers
* Novel Quantum Algorithms from Classical Transforms
*  Quantum Algorithms Across Topological and Quantum Circuit Models
« Optimal Experimental Design (OED) for Quantum Technologies
« REDWOOD: Resilient Federated Workflows in a Heterogeneous Computing Environment
BNL : NPPS, CDS; SLAC; ORNL; UMass; CMU; UPitt
« EIC Computing at BNL
CDS, NPPS, CAD, Nuclear Physics
« DUNE Computing at BNL
« FCC (including FCC Analysis Center prototype)
 Data and Analysis Preservation for RHIC
« NP Collaborative Tools
« Codesign in Action for Experimental Science Computing: Architectures, Systems, and Testbeds

*) the list is incomplete (and many projects are BNL wide)

k? Brookhaven Torre’s talk about Al/ML @NPP
National Laboratory 14




REDWOOD: Resilient Federated Workflows in a
Heterogeneous Computlng Enwronment

Goal: Optimal data placement and . * =
workload scheduling enhancing - <.
the resilience, throughput, and °
resource utilization.

Approach

Real-time Feedback

Dispatcher. e.g. PanDA breaks
task into jobs and assign them to
compute sites.

( il =‘1::.

Dispatcher (PanDA)

- (Break Task into Jobs, assign

Jobs to sites,)

OUTCOME
(reliability, queuing time, error
rate, data movement)

INPUT
(Surrogate model of INPUT)

_Approach - I 1
Mu!tl O bj.eCtlve’ m.ultl ConStra.mt : World Nuclear and Particle Physics ,
optimization algorithm to assign jobs Research Network (Ses, irage cpacy, Interacting components
computing capacity, bandwidth,
and allocate da.tas.ets _ R of the dynamic model
O Enhanced monltorlng to prOV|de Environment: different sites wil have different

computing capabiliies, storage, data partition,
network bandwidth, local jobs, and failure rate, ete.

deeper understanding of the workflows

and distributed systems I
O Remote Streamlng Capablllty Wlth data [ Dlnfurmation,Worhoadand 3ataFManageme?t S\;st;r; }
. . ynamic resources mapping and WF partitioning Trac
reduction to support near-real-time

Histogram of the
queuing time

workflows i J_ Lif:*”ﬂ ]' ‘
O System modeling approaches for g —
large-scale distributed and | )
heterogeneous computation grids S ——— T N

Error type breakdown

OAK o1 A f.
S ; "RIDGE ki
k Brookhaven
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REDWOOD: Developing an Innovative Computing
Ecosystem to Impact Science

® Three National Labs, Brookhaven, Oak Ridge and SLAC, and three universities, Carnegie
Mellon, University of Massachusetts Amherst, and University of Pittsburgh

® Lead Pl A. Klimentov (BNL) with co-Pls A. Hoisie, T. Maeno and S. Yoo (BNL); S. Klasky
((%RNL);tand W. Yang (SLAC); as well as a BNL team of computing scientists, IT engineers, and
physicists

* Ecos%/stem of research platforms connected to address scientific challenges involving complex
workflows and exabyte data volume in heterogeneous computing environments.

® Data placement and complex workflows created by brokering and partitioning algorithms and
associated runtime to help science applications better exploit architectural features found in
DOE’s computing infrastructure.

° Inc_:orE[).O{a)te timely new algorithms to provide near-term high impact on science (with domain
scientists).

® Software and algorithms will be demonstrated at scale for several scientific domains, e.g.,
particle physics, astronomy, and nuclear fusion.

® Make software and algorithms easily available to the research community for broader, long-

term impact.
16
OAK  gnvg A/ O Universitys  Carnegie  sx . o Splinter meeting on Thu Jan 23
"RIDGE Ol f\l)l,/ Nassachusetts t;':;}!f:.'lfsi“, Pittsburgh organized by Paul Nilsson and Frederic Suter
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https://indico.cern.ch/event/1472836/timetable/#20250121.detailed

Codesign in Action for Experimental Science
Computing: Architectures, Systems, and Testbeds

Unique collaborative testbed facility with
access to live, actual data from diverse
experiments, such as CFN (microscopy),
NSLS-II, and RHIC, for codesign of
architectures and experimental workflows.

G Brookhaven

National Laboratory
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\
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Leading the charge with SimNet and PerfVec
Accurate simulation faster by orders of magnitude
compared with Discrete-Event Simulation

History context History context
simulation | features
Fetch latency Clock .
A
tati Machi
e o (T = P >
properties learning model Context
4 management
I Store latency
nstruction
| t t
jcontext features]
F Y

SimNet: Al-based architecture simulation https://github.com/lingda-li/simnet

Program
representation =
model

Program
representation

Program »

execution trace

Prediction
results

Performance
predictor

icro-architectur
representation
model

Micro-architecture >

]
» Micro-architecture
configuration

representation

PerfVec: Al-based Architecture modeling https./github.com/PerfVec/PerfVec

Li, L. S. Pandey, T. Flynn, H. Liu, N. Wheeler, and A. Hoisie. 2022.
SimNet: Accurate and High-Performance Computer Architecture
Simulation using Deep Learning. POMACS 6(2):Article 25. DOI:

10.1145/3530891

Pandey, S., L. Li, T. Flynn, A. Hoisie, and H. Liu. 2022. Scalable Deep
Learning-Based Microarchitecture Simulation on GPUs. SC22, pp. 1-15.
DOI: 10.1109/SC41404.2022.00084.
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Full Bayesian

Emmy Noether Fellowship

.y Act —es bspace
Fellow has worked on two activities: o
Reduction of a 6-layer
deep neural net’s
O Reduce high-dimensional neural network weight space to weight spacetoa 30D ©o..— =
<1 OO dimenSionS parameter Space Likelihood-informed SUbspace
. : : : shows almost no loss ‘ ;
O Can be applleclj.to differentiable hybr!d models ! of quality in
O QOutlook: transitioned to Data Reduction uncertainty

quantification.

O Learn effective PDE (partial differential equation) governin .2
equations that describe coarse-grained dynamics of C
higher-fidelity simulations

O Qutlook: Developing synthetic data augmentation
methods for greatly enhanced training sample

efficiency. Evaluating for possible transition into other Learning a neural approximation to a 2D PDE’s governing
projects (e.g., MMICC) equations shows high accuracy when the data-driven neural PDE

solver is time integrated.

uuuuuu
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(Online) Tensor Factorization (TF) Depth

® TF techniques are used to discover dominant spatio-
temporal modes in the system and to quantify
dominant AMOC modes. Latitude

° Beneficial to detect change point that is exascale- A Tucker Decomposition result of a CESM2 simulation
ready with TF and compare modes of different e ——
modeling results. : @

00 ."'J O L4
) 0 s

Explainability Study for Latent > o
epresentations =X

® Developed several dimension reduction methods, - L A\ 1 H o B
including TF, correlations, embedding, clustering, : —— !
and ablations, to understand and compare laten I | ol
representations. wao| )

- il —_ L=2 L-4 L-8 L-16 1-32 L-B4 L-128 L-256 L-512 original

® Demonstrated that learned latents of a climate P N |
reconstruction model incorporate the contextual 70— s ”T o Explaining latent representations

information in their representations, leading to B b

I iti P PO yem—— - —— W. Xu, D. F. DeSantis, X. Luo, A. Parmar, K. Tan,
};]ne%%vgsd model performance over traditional 3 8. 7. Bulanl, . Lia A Pamac K Tan

Tucker can extract Impact of Latent Representations iny Implicit Neural

" : : Networks for Scientific Continuous Field

additional information Reconstruction," AAAI co-held XAl4Sci workshop.
e.g., depth mode strength

L-64
L-128

it Liss
=
o
t
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BER: LUCID and RADBIo

Improve modeling of effects of low-
dose radiation on the human body.

Working in various areas: biological
pathway latent space dynamics
identification; prompt engineering for
constructing pathways from bio
iterature; uncertainty quantification for
arge language model (LLM)
Knowledge extraction; optimal
experimental design.

u.'\ Brookhaven

National Laboratory

e
Perturbation
Ordinal Dosag:

Explainable variational autoencoder (VAE) for ordinally-
perturbed transcriptomics data.

Content and style functions generate an
optimal Pareto frontier of LLM prompts for
- | biological knowledge elicitation.

cccccccccccc

A) B) ) D)
a = 0 (VEGA) a = 1e3 a = le6 a = 1e9
) : 18 [

VAE identifies changes within latent space after gradual exposure to radiation.



Hierarchical, Al-Enabled Modeling of Future

Supercomputers

Goal: Develop a modular and hierarchical
modeling framework to explore and
optimize system-level impacts of beyond-
CMQOS technoloaies

Algorithm DAG

; 4.:

Design space

Device exploration

Single flux quantum (SFQ) ‘\‘

Josephson

Objective value

i

Objective
function

v

Performance and
energy prediction

Jjunctions (JJ \)"\

\ § >
Josephson-Junction Field- A Memory

Effect Transistor (JJFFT) /| =
| [— / uperconductor|
\‘_3] accelerator

Device ; Accelerator N Node N System
model model model model

F f f f

Device type, # processing elements,  # accelerators, # nodes, interconnect
temperature, ... memory size, ... # CPUs/GPUs, ... topology, ...

t ¢ ¢ :

Gradient-based optimization

G‘ Brookhaven
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CNN = Convolutional neural network

Achievements
® Modeled the accelerator performance and
power of CNNs using Timeloop
® Developed loop fusion strategies to
alleviate memory bottleneck
® Provided a system model for GEMM

(general matrix multiply
MAPPER MODEL

Workload Spec —> Mapspace

. / Construction |
Arch Spec A, I .
; - Mapspace I'\j"lapplng )
Constraints D Tile uArch
I:[‘ ] Analysis Model
D D D Area ‘
D Tech
i Model
[ Search

Future Work

® Expand and integrate with system models
® Model broader scientific applications

® System-level design space exploration

22



SciDAC RAPIDS

Scientific Achievement: A new, implicit neural
representations (INRs) method to accurately reconstruct
continuous physical fields from few sensor points. The
model achieves state of the art in continuous field
reconstruction and outperforms other models on two

benchmark datasets.
Significance and Impact
® Addresses a challenging problem, where the locations and
number of sensors keep changing.
® Predicts a continuous physical field for an arbitrary
resolution.
® Model surpasses existing methods for scientific data.

® Technology has been applied to SciDAC ImPACTS.

Technical Approach
® Introducing a context-aware indexing mechanism that
compared to standard time index (t)-based INR models,
incorporates additional semantic information.

® Factorizing target signals into a set of multiplicative basis
functions and applying element-wise shift and scale
transformations to the latent codes.

u.'\ Brookhaven

National Laboratory

Prior approach Our approach

x il u| = INR H

INR @ :
[¢] ugi)

Overview of our method, supporting sparse and irregular data.

location query @ filter lrls_s Training
& € Xirain Eo E
S -
O qcr* ‘\O :O: 0 c R%
@) &
© 0 sensor 0 encoder © 0
o O - O p--m-ren- ‘ o
8 \\ “
o N, o)
0 (1]

N\,
N\ %,
A
A
A
*odecoder
location query ] filter
&l o2)

x € W\ Xirain Inference

INR training and inference framework to create continuous field from
sparse sensing data.

Simulation-based Data Satellite-based Data

Model Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4
Sampling ratio s = 5% Sampling ratio s = 0.1%

ResMLP 1.951e-2  1.672e-2  1.901e-2  1.468¢-2 1.717e-3  1.601e-3  1.179e-3  1.282¢-3
SIREN 2483¢-2 24572 2.730e-1  2.455¢-2 3.129¢-1  4.398¢-2  1.304e-2  9.338e-2
FFN+P 2974¢-2  1.121e-2  1.495¢-2  8.927¢-3 2.917e-3  2.392¢-3 7.912e-4  7.565¢-4
FFN+G 294362 1.948e-2  1.980e-2  1.426e-2 4.904e-3  7.969¢-3  1.005e¢-3  1.044¢-3
MMGN 4.244¢-3  4.731e-3  3.148¢-3  3.927¢-3 1.073¢-3  1.131e-3  6.309¢-4  6.298¢-4
Promotion 78.24%  57.79%  78.94%  56.01% 37.51%  29.35%  20.26%  16.74%

Our model (MMGN) outperforms all others on two benchmark datz%sets.

Luo, X., Xu, W., Nadiga, B., Ren, Y., & Yoo, S. (2023, October). Continuous
Field Reconstruction from Sparse Observations with Implicit Neural Networks. In
The Twelfth International Conference on Learning Representations.



Novel Quantum Algorithms from Classical
Transforms

Achievements

O

O
O

Discovered a quantum Hermite transform that is
exponentially faster than the classical Hermite
transform

Implementation in progress

Algorithm permits fast-forwarding of certain
Hamiltonian simulations that previously was
exponential time

Future Work

©

|dentification of sufficient conditions
for classical numerical transforms
supporting exponential quantum
speedups based on recursive
Implementability

Staff: Ning Bao; Kwangmin Yu
Brookhaven

National Laboratory
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Quantum Algorithms Across Topological and Quantum
Circuit Models

Achievements Future Work
o Created a method for initialization of logical o Resource estimation for topological
qubits for the Fibonacci non-Abelian algorithms

topological code. For a 2D lattice the number
of steps grows as the square root of the
number of plaquettes

o Combining logical computation with error
correction steps

o (Conceiving a novel quantum method to
calculate the Khovanov homology and
integrating it with topological fault tolerance

o Devised methods for efficient braiding of pairs
of logical anyons essential for implementing
multi-qubit gates, reducing the cost to ~2.5 x
braiding of single anyons

o Extended the application of quantum
algorithms for calculating homology to knot
theory

Staff: Layla Hormozi; Seth Lloyd
G Brookhaven

National Laboratory 25




Optimal Experimental Design (OED) for Quantum

Technologies Radiator
/" Impacts
Goals: Make measurable predictions using Superconducting Quantum Device 7~  Microstructuring of
physical models (Geant4/G4CMP) and = : ‘Q/ ~ _—| quantum hardware
optimize experiments to maximize T ez substrates mitigates
observable differences 1| B 5, / i"'r;r;ztgom radiation
I N e '

Current Application |
® Use simulations to test and optimize error
mitigation strategies for quasiparticle poisoning

8

mm l

First Generation Design
Differential Evolution:

Optimal Design

(QPP) d . i

® Optimize microstructure designs to improve 1 Populations of ) 555, St
quantum circuitry operation : g:ﬁ:‘rg?:da;i I A

Achlevements 1 ovalugtedinthe | e e
Reduced error rates: predicted 36% improved i simulator. With each o NN
performance in error mitigation strategy. iteration, the ) <:: <:: pop g TogTey

® Better efficiency: Allows for less material to be population evolves | .5 SN
removed from the substrate. Chips will be less until an optimal | o2 N o .
fragile. EEEE 73« solutionisfound. ¢ 5 =\ o[f & 5

® More flexibility: Simulations now can include other
chip materials for a generalized materials

Features from
evolvegs designs

ff P r f r \( Vi 'Ur E. Yelton et al. Phys. Rev. 9 4519 (2024).
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Lightning Talks:
Subjects and Speakers

® Advancing Integrative Structural Biology
through HPC and All,

® Multimodal Foundation Models,
® ML-driven Prediction of Resource,

® Using Al/ML for Data Placement
Optimization in a Multi-tiered Storage
System within a Data Center,

k? Brookhaven

National Laboratory

Modeling & Simulation of Performance and
Resilience in Distributed Systems,

An Active Learning-based Streaming
Workflow for Reduced Data Training of
Structure Finding Models in Neutron
Diffractometry,

Neural Compression for sPHENIX,

Learning Active Subspaces for Effective
and Scalable Uncertainty Quantification in
Deep Neural Networks,

Decision Making for Autonomous
Experiments,

Future Supercomputer Modeling,

27



