
Grid simulation status and plans

Date: January 23, 2025
Meeting: REDWOOD Mini Workshop at TIM

Raees Khan, Paul Nilsson,
Sairam Sri Vatsavai

Need for a Software Description of the ATLAS GRID in REDWOOD

2

ATLAS GRID
Software

Description

Job Allocation
Algorithm

Plugin
Interface

Algorithm tells how
to allocate jobs

Run
Simulation

Output of
Simulation

Implement on
Simulated GRID

Output: Avg CPU Load, Avg number of cores used at sites,
data transfer time taken, etc.

Process
output
(feedback
loop)

REDWOOD WORKFLOW

Monitoring
/Processing

New

New

3

Information
from other
sources.

Parser

SimGrid
Engine

Output:

Run

Various metrics, IO time, load on CPU, etc.

New Simulator Workflow
Job Manager

Dispatcher
(Plugin)Platform

Jobs

Resources

Jobs assigned
to resources

Filter

Interactive Monitoring
System: CPU load, Link Load.

🖥

Summary of Discussion at Pittsburgh Workshop

4

Ignore the complication of breaking tasks into jobs, work at the level of jobs (PanDa experts).

Take information of Jobs from Historic Data, use this to validate and calibrate the software
description.

Dispatcher (class which assigns jobs to resources) should be abstract so we can plug in any
dispatching algorithm whether that’s the current PanDa algorithm, Analytic algorithm being
developed by CMU or ML algorithm being developed by BNL.

Need an easy to use monitoring tool to show what goes on as the simulation progresses, CPU
load, Link load, etc. Moreover it should be interactive that we can turn off clusters or CPUs at
various sites and visualize how the job dispatching algorithm deals with this.

Error Injection into simulator.

After validation, work with people in Track 4 who can use historic data to generate realistic pseudo
jobs using ML.

Plugin Architecture

5

We have many different kinds of job allocation algorithms we will use in this project.

Simple algorithms for initial testing, Historic Data for validation, more complex algorithms being
developed by Track 1 & Track 4.

Need a flexible design which let’s any developer design a job allocation algorithm
and plug it in the simulation, without having to change the core code.

Solution: Plugins in the form of shared libraries (.dylib or .so) that can be plugged in
the simulator at run time.

Plugin Architecture cont’d.

6

To aid in the writing of plugins, the core codebase will come with an abstract
class, which will serve as a blueprint on how to write a job allocation algorithm
and will be installed in some standard location.

The plugin can then be developed completely separately, inheriting from the
provided abstract class and built into a shared library.

Once the plugin is ready it can be plugged into the simulation, by specifying the
path to the plugin (shared library) in the simulator configuration file.

7
1

Simulating Historical JobsHistorical Jobs:
• Past Panda user jobs collected to build AI surrogate models.

Job Injection (Latest Development):
• An updated parser that reads historical jobs from a data source (currently from a CSV file).
• The CSV file is created using V1 data.
• A new job manager to create jobs and send them to the job dispatcher for resource allocation.

Job Dispatcher (Latest Development):
• Allocates resources based on computing site information from historical jobs.

SimGrid Engine:
• Simulates the execution of jobs on the platform.

Output Metrics:
• Generates job-specific execution metrics,

such as execution time, I/O read size, and write size.
Test With 1M Jobs (Latest Development):
• Ran on Lenovo Thinkpad with 13th Gen Intel(R)

Core(TM) i9-13900H 2.60 GHz.
• Finished in 1hr 30mins.

Will build into
Plugin

Resource Manager

8

Quick Discussion with Paul, Sairam and Fred about using SimGrid extensions to extend
the SimGrid notion of a site to contain a resource manager. The resource manager will
take into account all resources at the site and provide a number of slots for job execution.

This is more close to what actually happens on the real grid, and this way the dispatcher
functionality is a bit simplified, assign jobs as they come in from the job manager and
assign them to slots.

One concern is that this might add too much overhead, might slow down the program
execution time… one of the reasons we decided not to use Wrench.

Interactive Monitoring System (beta)

9

WebApp using
REACT.

CPU load &
job info to be
displayed live.

Simulation
dumps
information
about sites and
jobs, live.

Current work
on integration
with backend.

Outlook

10

Ongoing work on collecting missing information about PanDa sites.

Validation & Calibration of simulator results with actual historic data.

We plan to communicate with algorithms team working on job scheduling as soon as
the plugin architecture is finalized, even something preliminary we can start to test.

Work on monitoring tool (will propose as a summer student project at CERN).

In discussion about writing a paper on the simulator framework, calibration with
ATLAS data, flexible plugin architecture, visualization application.

Suggestions & comments? Checkout the Github repo here

https://github.com/REDWOOD24/ATLAS-GRID-SIMULATION

