ATLAS Distributed Computing Overview & Outlook

BNL Splinter Meeting 2025-01-23

Mario Lassnig (CERN), Andreu Pacheco Pages (IFAE)

ADC Overview

ATLAS DISTRIBUTED COMPUTING

October 2024

- ATLAS Distributed Computing (ADC) comprises the hardware, software, and operations to
 - Support **distributed computing activities** of the experiments Ο
 - Research and develop the evolving computing needs of the experiment Ο

Running 24 / 7 / 365

- **Computing never stops** Ο
- 80+ people contributing centrally Ο
- Ο 50+ people across the world

Four major areas

- Physics computing activities Ο
- Infrastructure, operations & support Ο
- Data management Ο
- Workload & workflow management Ο

PHYSICS	FABRICS	DATA MANAGEMENT	WORKFLOW MANAGEMENT	
Production Coordination	Coordination	Coordination		
M. Borodin	I. Glushkov	S. McKee, P. Vokac	R. Walker, F. Barreiro Megino	
Analysis Coordination				
A. Forti	Infrastructure	System	System	
	Tier-0	Rucio	Workflow Definition	
Centralised Production	Grid		Workload Management	
Monte Carlo Production	HPC	Operations	Workload Execution	
Group Production	Cloud	System Deployment		
Data Reprocessing	BOINC	DDM Central Operations	Operations	
Physics Validation	Analysis Facilities	Monitoring	System Deployment	
HLT Reprocessing			Monitoring	
	Operations	Research		
Physics Analysis	Computing Run Coordination	Networks	Research	
User Analysis Tools	DA Operations	Caches	Data Analytics	
Analysis Model Group	DPA Operations	Storage	Analysis Facilities	
DAST	Central Services	Cloud	Cloud	
	CRIC		HPC	
	HammerCloud			
	Monitoring			
	ADCoS			

Plus many task forces and working groups, including HPCs and monitoring

ADC COORDINATION

Mario Lassnia, Andreu Pacheco Pages

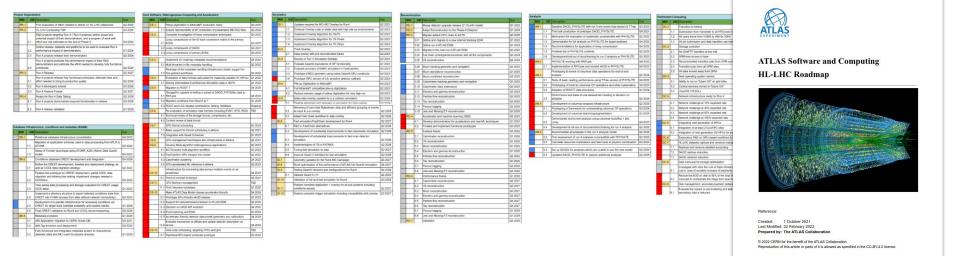
ADC communication flow

ATLAS

- Full information <u>here</u>
- The central point of communication dissemination is the <u>Operations Morning Meeting</u>, 09:00 CERN time daily
 - Content is brought by everyone via the <u>pre-filled minutes</u> and is typically about ongoing issues
 - The discussions and eventual decisions are then sent to **ELISA** shortly after the meeting
- The second important meeting is the <u>ADC Weekly</u>
 - \circ $\,$ $\,$ This is to give quick reports by the various areas relevant to ADC $\,$
 - This meeting is the prime place to learn about upcoming campaigns/workloads
- ATLAS Virtual Control Room for real time chats
 - <u>https://mattermost.web.cern.ch/adcvcr/channels/adc-operations</u>
- Emails
 - ATLAS users who need general support
 - Already hosted by Discourse, new email address
 - Specific help with data management
 - Specific help with workflow management
 - \circ ~ If you don't know who to contact

hn-atlas-dist-analysis-help@cern.ch atlas-comp-dist-analysis-help@cern.ch atlas-adc-ddm-support@cern.ch atlas-adc-dpa@cern.ch atlas-adc-expert@cern.ch

A humble request


- It is often times difficult to really understand site's needs
 - Even with years of experience we still have to resort to educated guesses
 - We'd like to streamline this a bit better
- We are currently fully rebuilding our documentation
 - Migration of content from TWiki from hosted CERN mkdocs-material based service
 - Website <u>https://atlas-computing.docs.cern.ch/</u>
 - Content <u>https://gitlab.cern.ch/atlas/computing-docs/atlas-computing-docs</u>

• If you have any suggestions to improve our documentation

- Do not hesitate to open a ticket in gitlab
- Do not hesitate to submit new documentation merge requests
- Do not hesitate to update existing documentation merge requests

R2R4 - The Road to Run-4

- LHCC performs a series of reviews of the Software and Computing plans of the LHC experiments towards HL-LHC
 - The <u>ATLAS HL-LHC Computing Conceptual Design Report</u> was published in May 2020
- A follow up <u>ATLAS Software and Computing HL-LHC Roadmap</u> was published in March 2022 with clearly defined *milestones* nicknamed "The Road to Run-4" (R2R4)

ATLAS HL-LHC Computing TDR is planned for this year

ADC Milestones

Demonstrators

- **DC-1** Transition to tokens
- DC-2 Storage evolution
- DC-3 Next operating system
- **DC-4** Network infrastructure
- **DC-5** Integration of HPCs
- DC-6 Non-x86 hardware
- **DC-7** Replication management
- DC-8 Data Carousel
- **DC-9** Storage usage
- DC-10 Cloud computing
- **DC-11** Analysis experience
- DC-12 Sustainability
- DC-13 Workflow management

DONE

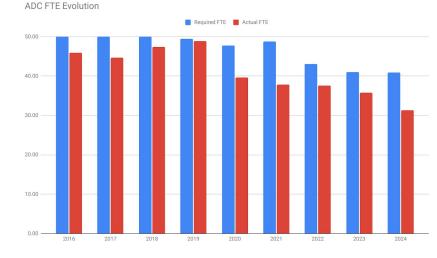
- ATLAS-Google as a fully integrated site
- ATLAS-Google as "bursty" resources
- ARM based PanDA queues
- Sustainability in ATLAS Computing
- Recreate DAODs on demand with Data Carousel

• ONGOING

- Optimized writing to tape for efficient reading
- Simulation of grid scheduling R&D 🥌
- Complex workflows R&D 🥔
- ON HOLD
 - Using Xrootd to seamlessly integrate S3 storage
 - General ARM OSG queue at BNL
 - Measurement of ATLAS energy consumption
 - Storage for data intensive application

Distributed Computing Risk Register

Category	Risk	Likelihood	Impact	Severity	Owner	Effect
Consensus	Stagnant interactions between key community projects	3	4	12	WLCG, CERN-IT, ADC	Long-winded discussions with no clear decisions and outcomes; Non-working APIs; Incompatible implementations
Catastrophes	Significant downtimes related to environmental disasters	2	5	10	WLCG	Unavailability of large volumes of data for extended periods
Capacity	Not enough available storage, CPU, network and/or dedicated hardware (GPUs)	2	5	10	WLCG, ATLAS	Cannot execute jobs; Cannot distribute data; Cannot store data
Dependencies	Loss and/or frequent changes in software dependencies	3	4	12	CERN-IT, WLCG, ADC	Failures in software execution; Additional development effort; Being stuck with old unsupported software
Procurement	Mismatch of ATLAS requested resources vs. site-provided resources	2	4	8	WLCG, ATLAS	Starvation of tasks due to limited resources; Additional costs for sites due to unclear schedules; Loss of allocations
Central support	Lack of persons to support analysis users, production managers, and to follow-up daily operational tasks	4	4	16	ADC	Prolonged task execution; Task submission delays; Storage resource overloads; Angry users
Personpower	Difficulty in retaining key personnel, impact on progress of ongoing projects	5	5	25	ADC	Impact on progress of important projects; Long delays; Potential cancellation of projects
Organisation	Insufficient number of suitable persons in leading roles	4	3	12	ADC	Destabilise ADC organisation, effectiveness, and follow-up of tasks


ADC Devolution

• Continuous loss of FTEs since 2019

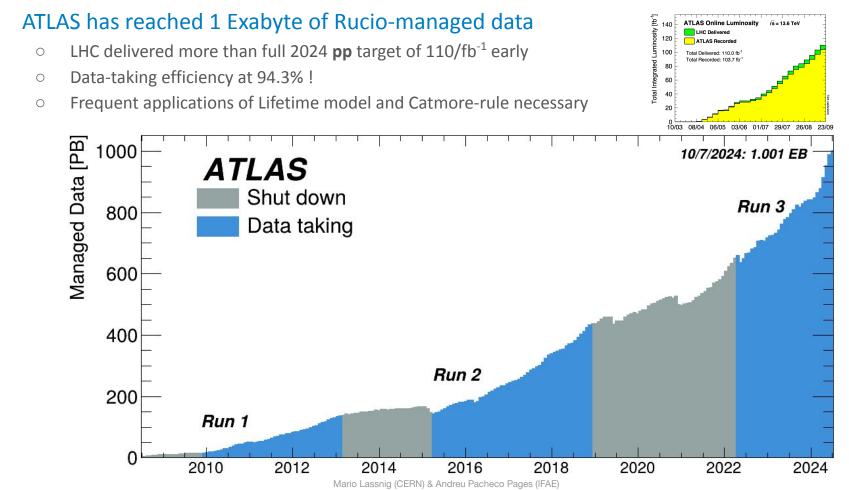
- With even bigger drops '19-'20, and '23-'24
 - Funding cycles ended, R&D projects ended
 - Lots of these people were involved in operations
- Now, operations at critical level
 - Production
 2.4 FTE (4 persons)
 - Data management 0.7 FTE (3 persons)
 - Analysis support
 1.7 FTE (4 persons)
- Central systems development
 - Rucio stable due to CERN & Community
 - PanDA/ProdSys stable due to USATLAS & Community
- Infrastructure
 - Hinges on 0.05 commitments across tens of people
 - Issues with non-ADC systems, e.g., CVMFS or IAM, still require valuable ADC expert time
 - Monitoring effort has almost vanished

• Observations

- \circ The majority of the 77 persons in ADC have contributions of < 0.2 FTE
- Many critical services depend on single persons who are already overwhelmed with work
- Big '21-'22 drop in *Required FTE* due to acceptance that many R&D projects won't continue
- Barely any young/fresh persons join computing, and senior experts are getting dragged into coordination

ADC Evolution

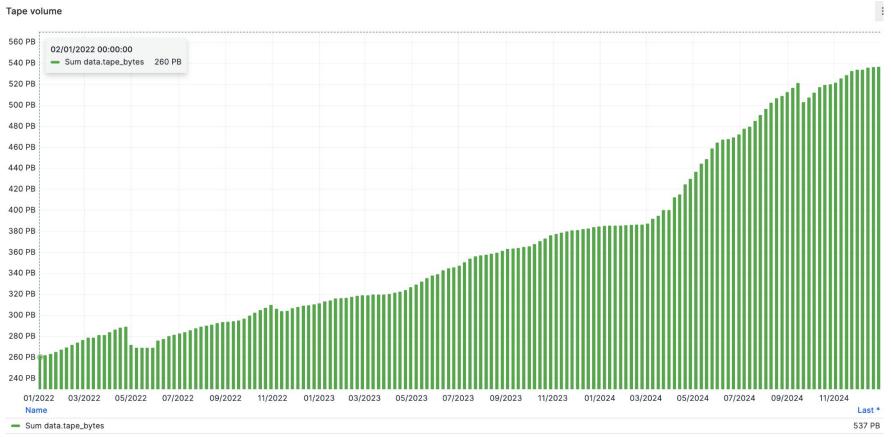
- We consider the following topics important for the TDR
- The new security model: Shift from X.509 to tokens
 - Has a profound impact on infrastructure, systems, and users
- Community computing as foundation of our shared infrastructures
 - Rucio already established and constantly pulling in new communities, recently SKA
 - PanDA is going the same way, which is very much appreciated
 - If we do not actively engage and cooperate with other big sciences we will be left out eventually
- Infrastructure stress-testing and system upgrades
 - \circ ADC is driving the HL-LHC Data Challenges with our people in key positions
 - We need to continue to invest here
- Allowing more flexibility for our computing models
 - R&D projects to evaluate different approaches (Recreation, Data Carousel, Clouds, ...)
- Opportunistic resources (Clouds & HPCs)
 - Fundamental shift in infrastructure procurements from countries / funding agencies
 - We need to continue to invest here
- Sustainable computing (beyond ARM)
 - Unfortunately we do not have enough effort here, but we need to raise awareness



Backup

Mario Lassnig (CERN) & Andreu Pacheco Pages (IFAE)

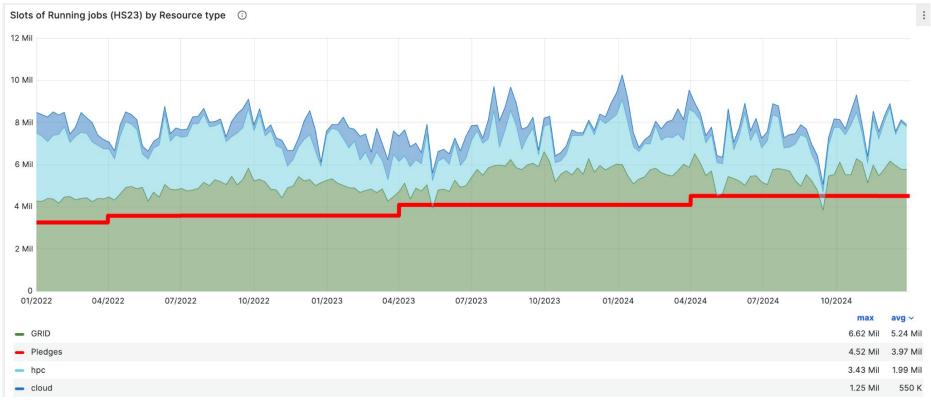
Major Rucio milestone - July 2024



Disk Size	Primary Size	Disk Files	Primary Files
378 рв	254 рв	885014186	824445332
Tape Size	Secondary Size	Tape Files	Secondary Files
662 рв	124 рв	374358894	60568854
Total Size		Total Files	
1.04 ев		1259373080	

Where we are: 3-year pledged data volume on tape (source)

Tape volume



Where we are: 3-year pledged data volume on disk (source)

Disk volume : 380 PB 02/01/2022 00:00:00 Sum data.primary_bytes 181 PB 360 PB 56.2 PB Sum data.secondary_bytes 340 PB 320 PB 300 PB 280 PB 260 PB 240 PB 220 PB 200 PB 180 PB 160 PB 140 PB 09/2024 01/2022 03/2022 05/2022 07/2022 09/2022 11/2022 01/2023 03/2023 05/2023 07/2023 09/2023 11/2023 01/2024 03/2024 05/2024 07/2024 11/2024 Name Last * 249 PB Sum data.primary_bytes Sum data.secondary_bytes 110 PB

Where we are: 3-year normalized slots of running jobs (source)

<u>Centralised production and user analysis have been running at full steam</u>

- Multiple concurrent campaigns of various intensity and duration
- Physics Validation, Production, Reprocessing, Derivation