

MD10703: Ions BB limit varying the crossing angles

R. Bruce, C. Droin, S. Kostoglou, M. Hostettler, G. Sterbini

https://indico.cern.ch/event/1472993/

<u>MD10703</u>: Ions BB limit varying the crossing angles \rightarrow 8 h + 2

h

As for protons, there is an interest in reduce the crossing angle of the ions (in IP1/2/5/8). Simulations show significant margin if we adopt the proton metric (DA>6 sigma) but the DA/MD benchmarking with ions is limited.

MD benefits:

- 1. Potential performance gain (θ_X and β * reduction and increased aperture margins)
- 2. Simulation benchmarking for ions studies

We request a 8 h (+2 h for validation if needed) MD to make one θ_x -scan in IP1/2/5/8 with $\beta^*=50/50/50/150$ cm

An EoF took place in 2023 (see IPAC24 MOPS06)

Courtesy of C. Droin

MD proposal (I): filling scheme

- 5 x 8b per batch, 4 batches per beam (<u>50ns_160b_160_80_73_40bpi_PbPb</u>).
- Bunches with nominal or pushed parameters (large intensity).

50ns_160b_160_80_73_40bpi_PbPb Save [Ctrl-s] Injection spacing : 600 ° ns AG keeper : 32461 Particle Type B1 : protons \$ Particle Type B2 : protons \$	Load [Ctrl-] Bunch spacing : 25 0 ns No. Batches : 3 0 Batch length : 48 0 Batch spacing : 200 0 ns Advanced Injections : advanced	Beam Info Bunches B1/B2 160 / 160 Injections B1/B2 4 / 4	-	Collision ATLAS/CMS ALICE LHCb Non Colliding B2 Non Colliding B2	ons 160 80 (50.0%) 73 (45.6%) 1 0 2 0
pp physics CLHCb ripple through Re-fill Add Injection	Deselect all Delete Selection	B1 classes : 0:0 1:4	7 2:0 3:40	4:0 5:33 6:0	7:40
		B2 classes : 0:0 1:4	0 2:0 3:47	4:0 5:40 6:0	7:33
possible LHCb collisions possible ALICE collis	optimal AGK setting: 33561				

Courtesy of M. Rufolo

MD proposal (II)

From <u>LMC 496</u>, machine nominal IP configurations

	Injection	Flat top	End of squeeze	Physics
Energy (Z TeV)	0.45	6.8	6.8	6.8
β* (m) IP1,2,5,8	11, 10, 11, 10	1.0,1.0,1.0, 1.5	0.5, 0.5, 0.5, 1.5	0.5, 0.5, 0.5, 1.5
Half external crossing (µrad) IP1,2,5,8	170, 170, 170, -170	150†, 150, 150, -135	150, 150, 150, -210	150, ± 150, 150, -210
Net half crossing (µrad) IP1,2,5,8		150, 78, 150, 4	150, 78, 150, -71	150, ± 78, 150, -71
Parallel separation (mm) IP1,2,5,8	-2, 3, 2, -3	-0.55, 3, 0.55, -3	-0.55, 3, 0.55, -3	Separation levelling
On disp knob	0	150*	150*	150*
RF voltage	8 MV	14 MV	14 MV	14 MV
Octupoles	-1 (13 A)	-0.5 (100 A)	-0.5 (100 A)	-0.5 (100 A)
Chromaticity	10	10	10	10

*final value to be tuned during commissioning based on background studies

to be confirmed in aperture measurements, option to go to 140 if needed at IP1/2/5

Courtesy of R. Bruce

MD proposal (III): procedure

- We reach top energy collision following the nominal cycle (but loading the new collimators limits to allow for crossing angles reduction, to be prepared)
- We reduce with 5/10 urad steps the IP1/5, IP2 and IP8 crossing angles using the orchestration tools (tested during the night of 21-22 Sept 2023, <u>F9177</u>). If losses occurs → optimize the tunes
- The target is to reduce the external half-crossing angle of $\Delta \theta$ =70 urad. That is
 - In IP1 from $\theta/2 = 150$ to 80 urad
 - In IP2 from $\theta/2 = \pm 150$ to ± 80 urad $\rightarrow \pm 8$ urad (almost HO*)
 - In IP5 from $\theta/2 = 150$ to 80 urad
 - In IP8 from $\theta/2 = -210$ to -140 urad $\rightarrow -1$ urad (almost HO*)
- Luminosity from the experiments will be required (bbb lumi whenever possible).
- Ideally, it would be good to have inputs from experiments on background levels
- We will end the cycle with emittance scan.

* We stop when we see a degradation of the lifetime

Thank you for your attention.

home.cern