Optimization of machine-induced backgrounds at ALICE

MD14326

R. Cai et al.

- In 2023, strong limiting background observed in ALICE
 - Some chips of ITS fully saturated; 25% of inner barrel acceptance lost
 - Main source identified as showers from ²⁰⁷Pb⁸²⁺ impacting on TCTPV.4L2.B1; produced in IR7
 - Mitigated by on disp knob (orbit bump changing ²⁰⁷Pb⁸²⁺ dispersive trajectory)
- Some remnant non-blocking background remains
 - Not a showstopper, but ALICE expressed wish to further reduce it

Proposed MD program

- Bring a setup beam of 21b , <3E11 charges to collision
- To empirically identify the source of remaining background, measure background in the ALICE experiment for a number of different machine configurations
 - · different collimator settings,
 - values of on_disp, potentially other orbit bumps,
 - separated or colliding beams in the other IPs,
 - with additional ADT excitations (like in loss maps)
- Around 10 minutes needed per configuration, plus a few minutes to put the ALICE detector in safe mode and bring it back while machine settings are changing
- Note: First tests could be carried out already in the ion commissioning on 27/10.
 - Results are being analyzed by ALICE could adopt MD program based on results and also findings in start of ion operation
- Time needed: 8h

LHC cycle with high-intensity Pb ion beams from injectors

MD14324

Motivation

- Alternative production schemes in the injectors considered for future ion operation beyond Run 4
 - Other ion species than Pb under consideration
 - Significant increase in luminosity requested by ALICE3 study
 - R. Alemany, H. Bartosik, H. Damereau, E. Waagaard et al., Light ion working group studying the feasibility in the injector complex
- 50 ns beams without PS splitting
 - Shorter trains and fewer bunches, but significantly higher bunch intensity

E. Waagaard et al.

Motivation (2)

- 25 ns beams
 - Requires 50 ns batches from the PS, slip-stacking in the SPS batches of 4b requires upgrades to the PS RF system
 - Tests with 2b, without PS splitting, can be done with present hardware, but gives sub-optimal LHC filling
 - Nevertheless, 2b tests interesting to study achievable intensity and if a future PS upgrade is motivated
- 25/50 ns spacing
 - Slip-stacking in SPS of 75 ns beams from the PS gives varying bunch-spacing 25-50 ns
- 50 ns beams with triple-splitting in the PS
 - Lower bunch intensity, but also smaller emittance and longer trains, giving a shorter LHC injection time
- Testing these beams in the LHC can give very important information
 - Study if the alternative schemes can give potential performance gains in the future, and if injector upgrades are motivated
 - Investigate whether alternative schemes can give any performance increase for Pb operation

MD procedure

- Inject a few trains produced with the most promising new schemes
 - If injectors can switch quickly, inject different types of trains
- Note: All beams are not yet optimized in the injectors
 - Will have to choose scheme(s) by the time of the MD
 - If no promising scheme has been identified, drop MD
- Bring the beams through the full LHC cycle to collision, with nominal machine settings
- Observe
 - Losses
 - Emittance growth in the LHC
 - Achievable bunch-by-bunch luminosity at start of collision
- Time needed: 8h (could maybe be reduced if the injectors can switch quickly)

Test of optics with smaller beta* at IP8

MD14365

Motivation

- Strong request by LHCb for increased integrated luminosity in ion runs
 - Presently using $\beta^*=1.5m$ reducing β^* could give an important gain
 - Previous (few) aperture measurements with protons in IR8 show potential margin
- Idea: test new optics in MD to identify potential showstoppers
 - Collimation and beam losses
 - Aperture
 - ALICE background
- Potential to use similar optics in O-O and p-O run in 2025 at low intensity

Procedure

- New optics cycle needed, adding a new IP8 squeeze segment to the present ion optics
 - Several optics candidates under study e.g., round $\beta^*=1m$, and flat $\beta^*=0.5/1.5m$ (R. De Maria)
 - Pre-study ongoing, final candidate to be chosen in the coming days
- 1 shift of optics measurement and correction commissioning (OMC)
- 1 shift of mixed studies using setup beam (21b)
 - IR8 aperture measurement
 - Loss maps
 - ALICE background check
- Time needed: 2x8h. To be seen if optics can be quicker

