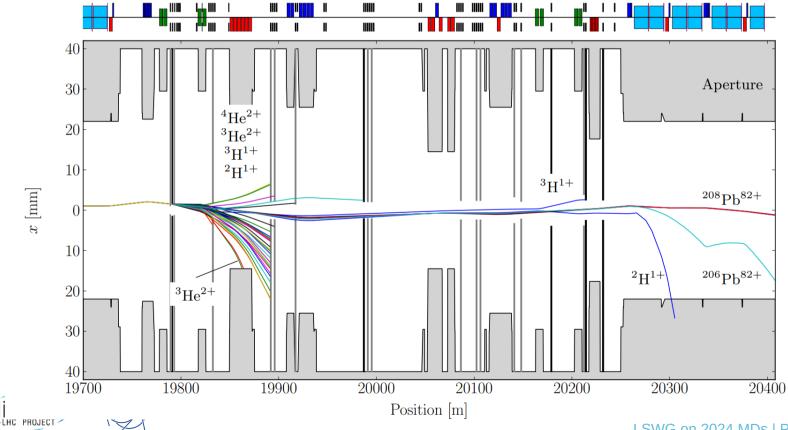
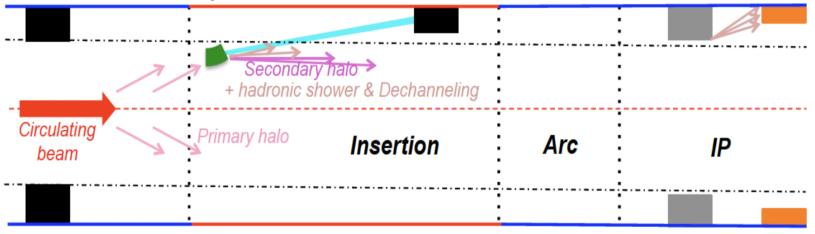

Crystal Collimation Quench Test 2024

Pascal Hermes and Roderik Bruce On behalf of BE-ABP-NDC

Acknowledgments to D. Mirarchi, M. Monikowska, C. E. Montanari, S. Redaelli, N. Triantafyllou, D. Valuch


LSWG Meeting on 2024 Ion MDs 01.11.2024

- Collimation quench test 2015
 with standard collimation system
- Pb ions at 6.37 *Z* TeV
- Quench at roughly 15kW
- Max. stored beam energy 10.8 MJ
- HL-LHC target > 20MJ
- Mitigation needed: crystal collimation!



Standard Collimation of Heavy Ions

Crystal Collimation of Heavy Ions

Bent crystal Deflected halo Massive Absorber

D. Mirarchi

2018 Measurements

Crystal	Maximum normalized BLM signal [a.u.]		Global leakage ratio
	Standard	Crystal	Gibbai leakage ratio
B1H	$(5.81 \pm 1.03) \cdot 10^{-13}$	$(7.30 \pm 0.15) \cdot 10^{-14}$	8.0 ± 1.4
	Q8-9	Q8-9	
B1V	$(1.95 \pm 0.07) \cdot 10^{-13}$	$(6.39 \pm 0.05) \cdot 10^{-14}$	3.1 ± 0.1
	Q8-9	Q12-13	
B2H	$(2.76 \pm 0.39) \cdot 10^{-13}$	$(7.89 \pm 0.78) \cdot 10^{-14}$	3.5 ± 0.6
	Q12-13	Q8-9	
B2V	$(2.25 \pm 0.01) \cdot 10^{-13}$	$(1.46 \pm 0.36) \cdot 10^{-13}$	1.5 ± 0.4
	Q8-9	Q8-9	

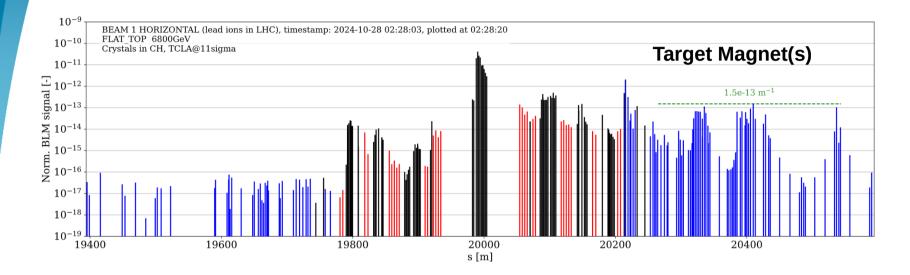
M. D'Andrea

- Ultimate performance limitation for heavy ions with crystals unknown
- Aim to probe levels of 60kW & 100kW in LHC design loss scenario (steady state loss rate over 10s)
- Could aim for fast loss scenario if limitations observed in run
- Last QT (2015) in B2H plane: aim for B1H plane here
- 6.8 Z TeV beams at flat top (lower quench limit than 2015)

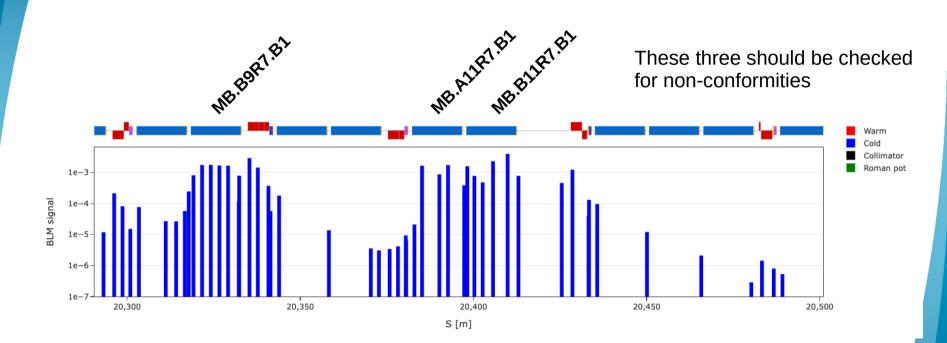
- Roughly 2×10¹⁰ charges per bunch
- Standard injection: 56 bunches
- Roughly 1.25 MJ per 56 bunches
- Proposal: per quench attempt 2x56 bunches enough margin for 10s
- Two quench attempts per fill: 2x(2x56) + some individuals for tests
- 12h: up to three fills for contingency
- Increase in target loss rate (Fill 1: 60kW → Fill 2+3 : 100kW)

Collimator Settings

• Nominal collimator settings used & validated with higher intensities


BLM Thresholds

 Nominal OP settings could be used with increased MF (designed with the intent to require just an increase of MF in QT)


ADT Settings

• Controlled by ADT expert with application successfully used in 2022

