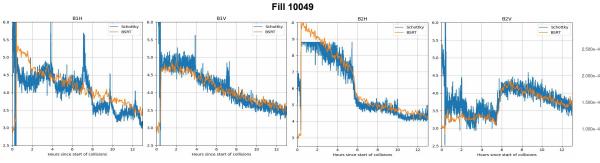
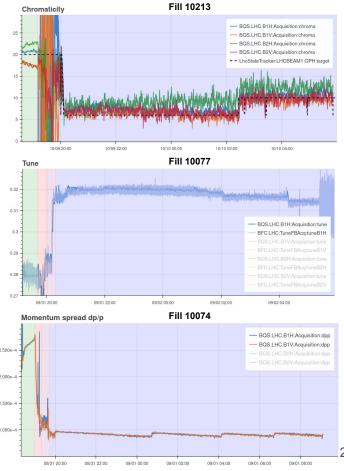
MD 14343: Schottky-based diagnostics with ion beam

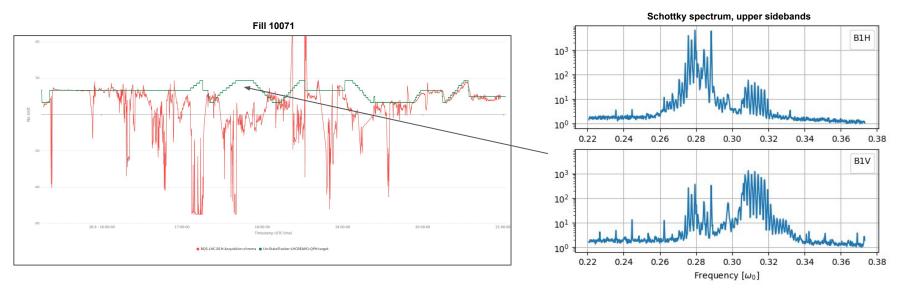

D. Alves, C. Lannoy, K. Lasocha, N. Mounet


Motivation

The data collected during the proton run showed the potential of Schottky-based estimate of:

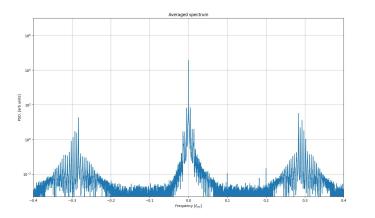
- Chromaticity
- Tune
- Dp/p
- Emittance

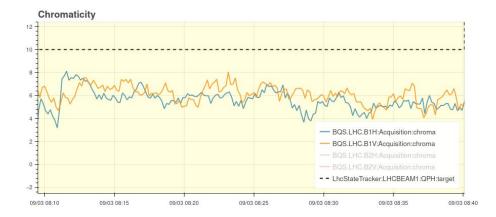
With nominal bunch intensity, at INJ energy and during collisions.



Motivation

On the other hand, the technique failed:


- During flattop-adjust phase (coupled components)
- For probe bunches (low SNR)

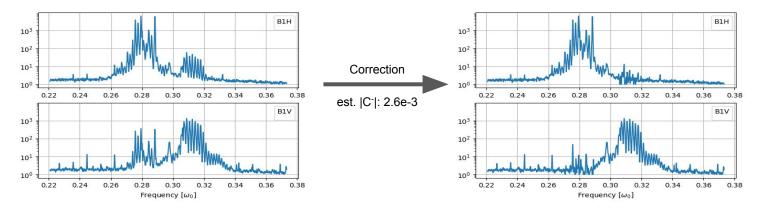


Motivation

On the other hand, the technique utterly failed:

- During flattop-adjust phase (coupled components)
- For probe bunches (low SNR)

MD Goals


The goal of the MD is to study, in a controlled manner and with a clean ion signal:

- Bias in the Schottky-based estimate due to the signal strength
 - Confirmed to be present for proton probe bunches
 - Verify if bias could be present in a standard ion fill, due to the variations in bunch emittance and intensity
- Impact of the coupling on spectra
 - Find at what levels it becomes a problem for diagnostics
 - Test mitigation techniques and C⁻ estimate

MD Goals

The goal of the MD is to study, in a controlled manner and with a clean ion signal:

- Bias in the Schottky-based estimate due to the signal strength
 - Confirmed to be present for proton probes
 - Verify if bias could be present in a standard ion fill, due to the variations in bunch emittance and intensity
- Impact of the coupling on spectra
 - Find at what levels it becomes a problem for diagnostics
 - Test mitigation techniques and C⁻ estimate

MD Plan

- We would like to have 8 bunches in the machine
 - Of different intensities: E.g. ~ 6e9 and ~ 3e9
 - \circ Of different horizontal and vertical emittances: E.g. ~ 1.5 um and ~3 um
 - We might reuse bunches after the MD 14363 (Off-Momentum Beam Loss Patterns) or inject new ones, depending on their parameters
- At INJ energy, at flattop before collisions and during collisions we will:
 - Perform two-value Q' scan (10 and 20 units) only at flattop
 - Perform 3 value $|C^-|$ scan (~0, $\frac{1}{4}$, $\frac{1}{2}$ of Δ_0)
 - Sequentially observe all the bunches with the Schottky monitor

Scans will be supported with WS beam size, rf-modulation Q' and AC dipole C⁻ measurements

• Total beam intensity below 3e11

The minimal time needed: 5 h