

RF MD#6 Request

H. Timko, T. Argyropoulos, R. Bruce, B. Karlsen-Baeck, N. Triantafyllou, M. Zampetakis LSWG, 1st November 2024

MD14346 RF flat bottom optimization for ion debunching

- Motivation
 - In 2023, lot of issues with losses at injection and start of ramp
 - Small capture voltage and/or large longitudinal emittance increases capture/injection losses, but decreases IBS
 - With large capture voltage and/or small emittances, capture losses are decreased, but IBS-induced debunching increases the start-of-ramp losses
 - Where is the optimum in terms of RF settings?

MD14346 RF flat bottom optimization for ion debunching

- First part of the MD
 - Determine the optimum voltage
 - Vary capture voltage and vary the time spent on flat bottom
 - Presently used 8 MV was chosen somewhat arbitrarily
 - Try "dips" at injection, decreasing voltage for capture and increasing after filamentation

• Second part of the MD

- Optimizing the longitudinal emittance
 - Cannot vary SPS extracted bunch length determined by slip stacking
 - Use RF phase modulation at LHC flat bottom compare bunch profile evolution
 - Optional: batch-by-batch blow-up

MD14346 RF flat bottom optimization for ion debunching

- Third part of the MD
 - Vary intensity from SPS/LEIR and compare IBS evolution in LHC to determine the ratio of RF noise to IBS
- Fourth part of the MD
 - Perform 1-2 ramps to measure start-of-ramp losses
 - Use trains with different longitudinal emittances (via RFphase modulation)
 - Use trains that spent different times on flat bottom
 - Different RF voltages
- Beams
 - Up to 300 bunches/beam
 - Intensity range: 1.3-2.7e10 charges/bunch (varied from LEIR)

home.cern