WP1: FCCee injector linacs status report

Alexej Grudiev on behalf of the WP1

S. Bettoni, P. Craievich, S. Doebert, A. Kurtulus, A. Latina, J.-Y. Raguin, Y. Zhao, et. al.

5/12/2024

New baseline layout (4 AS/module, 4 bunches@100 Hz)

Max. Klystron Power: 80 MW, Operating Klystron Power: 64 MW i.e. 20 % Margin

Linac	<a λ="">	Bunch Charge [nC]	Kly. power per structure [MW]	Loaded acc. gradients [MV/m]	Nb. modules	Linac lengths [m]	Oper. power consumptions [MW]	Max. power consumptions [MW]
e-linac *	0.15	5	14.2	19.5	14+1	215	2	2.5
p-linac**	0.2	15	15.4	13.3	22	319	8	9
HE-linac *	0.12	5	14.2	21.1	72	1080	9.5	11.5

* 3 μs RF pulse length, 6 μs HV pulse length

Assumes 25 m WR284 waveguide system length for one RF module

** 5 µs RF pulse length, 8 µs HV pulse length,

Assumes 25 m WR510 waveguide system length for one RF module

Assumes 6 structures (2 modules) for Capt. Linac, 20 structures (5 modules) for S1 Linac and 260 solenoids

Acc. Structure parameters

Structure parameters are calculated for the single bunch case.

	HE-linac	E-linac	P-linac	
Frequency [GHz]	2.8	2.8	2	
Avg. Aperture	0.12λ	0.15λ	0.2λ	
Entr., exit aperture	14.85 mm, 10.85 mm	17.13 mm, 14.99 mm	30 mm, 30 mm	
Iris thickness	2.84 mm → 4.04 mm	10.4 mm → 13.7 mm	14.3 mm → 20 mm	
Vg (% c)	3.92 → 1.25	3.14→ 1.38	2.58 → 1.92	
r/Q (kOhm/m)	3.63 → 4.38	3.28 → 3.67	1.49 → 1.52	
Q	16571 → 16039	14599 → 13668	20977 → 19102	
Structure Length [m]	3	3	3	
Filling time	460 ns	486 ns	447 ns	
SLED coupling	15	15	17	
Eff. shunt impedance	102 .25 MΩ/m	87.17 MΩ/m	38.73 MΩ/m	
Repetition rate [Hz]	100	100	100	
Klystron power per structure	14.2MW	14.2 MW	15.4 MW	
Average Structure Input Power	3.72 kW	3.76 kW	3.68 kW	
G _{avg}	22 MV/m	20.3 MV/m	14.1 MV/m	
E _{max} (instant.)	73 MV/m	77 MV/m	55 MV/m	
S _{c,max} (instant.)	501 mW/μm²	453 mW/μm²	298 mW/μm²	

Acc. Structure parameters

Structure parameters are calculated for the four bunches case.

	HE-linac	E-linac	P-linac		
Eff. shunt impedance (Four bunches)	95.65 MΩ/m	81.69 MΩ/m	36 MΩ/m		
Klystron power per structure	14.2MW	14.2 MW	15.4 MW		
Unloaded G _{avg}	21.28 MV/m	19.66 MV/m	13.59 MV/m		
Bunch Charge	5 nC	5 nC	5 nC	10 nC	15 nC
Loaded G _{avg}	21.06 MV/m	19.49 MV/m	13.5 MV/m	13.42 MV/m	13.31 MV/m

Compansated

<u>HE Linac:</u><u>4 Bunches case:</u>

Beam loading effect

For bunch charge: 5 nC 25 ns of bunch spacing

Golden pulse applied

e- and HE linac: static effects

Sensitivity to static misalignments

- Assumed rms Gaussian distributed misalignments: 50 um for quadrupoles, 100 um per RF structures, and 30 um per BPM
- Applied one-to-one correction and DFS (including 10 um resolution) in cascade
- More than the 98% of the good seeds considered in the calculation of the emittance growth
- e- linac:
 - Emittance good enough for the positron production (e-linac)
 - Emittance expected to be good enough for the injection to DR (tbc by the DR group)

HE linac:

 Emittance growth fulfilling the booster requirements

Emittance growth under control

ε _x (mm.m	irad)	ε _y (mm.mrad)			
Maximum	Design	Maximum	Design		
20	<12	2	1.6		

e- and HE linac: dynamics effects

e- l	inac	HE linac			
Multi-bunch	Single bunch	Multi-bunch	Single bunch		
1.03	1.18	1.02	1.01		

From the previous design RF optimized for a maximum kick=0.11 V/pC/m/mm

 $JA = \sqrt{\frac{A_{final}}{A_{initial}}}$

Single bunch

No showstoppers identified

Longitudinal phase space manipulation: "golden" pulse and energy compressor (EC)

- Total length <100 m including matching sections upstream and along EC</p>
- On-crest operating phase to optimize the transverse beam quality and maximize the acceleration efficiency
- For the top-up operation with variable (0-100%) charges in each of the 4 bunches, LLRF used to generate a <u>unique</u> golden pulse
- EC is used to match both the single- and multi- bunch target parameters, see below

Single bunch DE/E (%)

Rms bunch length (mm)

Dt from bunch 1 (ps)

DE/E centroid from bunch

3

Bunch 4

0.14

1.02

0.049

-1.6

-30.5

	Bunch 1	Bunch 2	Bunch 3	Bunch 4		Bunch 1	Bunch 2	Bunch
	0.15	0.15	0.14	0.12	Single bunch DE/E (%)	0.14	0.15	0.14
	4.04	4.05	4.07	4.09	Rms bunch length (mm)	1.03	1.02	1.02
1 (%)	0	-0.003	-0.007	-0.019	DE/E centroid from bunch 1 (%)	<0.011	0.011	0.030
	0	5.7	10.9	17.2	Dt from bunch 1 (ps)	0	-0.6	-1.2
					Dt from bunch 1 absolute (ps)	-28.9	-29.5	-30.1

These parameters seem to be acceptable by the booster

p-linac design

- Section 1 (S1)
 - Structure a=30mm, L = 3m and solenoids
 - N = 20, G = 13.3 MV/m, ϕ = -10° (optimized for max. yield)
 - Average energy (around bunch core) at exit: 931.7 MeV
- Section 2 (S2)
 - Structure a = 30mm, L = 3m
 - Periodic FODO cells. 2 structures per FODO cell. FODO phase advance: 76.345° (optimized for min. beta)
 - Quadrupole length: 0.4 m. Quadrupole-Structure distance:
 0.15 m. Quadrupole spacing: 3.3 m
 - N = 52, G = 12.756 MV/m, ϕ = 5° (optimized for max. yield)
 - Average energy (around bunch core) at exit: 2.866 GeV

Parameter	Value
Collective effects considered	Space charge; Short- range wakefield
Primary electron bunch charge assumed for collective effects [nC]	5.0
Bunch length (around bunch core) at PL exit [mm]	3.0
Energy spread (around bunch core) at PL exit [%]	0.95
Total positron yield (all positrons) at PL exit	3.41
Expected DR accepted yield with ±2% energy acceptance at PL exit	3.01
Normalized X, Y emittances (accepted positrons) at PL exit [mm*rad]	13.1, 13.0
Geometric X, Y emittances at (accepted positrons) PL exit [mm*mrad]	2.34, <mark>2.32</mark>

in p-linac transmission and yield

Yield evolution along z

Longitudinal phase space

- At PL exit
 - Total yield: 3.41
 - $\,\circ\,$ Yield with cuts (2.86 GeV ± 2% in energy, ±10 mm/c time): 3.01

p-linac imperfections

- Imperfections considered
 - **Position** error (x, y): σ = **100 um** for all elements
 - Angular error (roll, pitch, yaw): σ = 100 urad for all elements, except that σ = 200 urad for all NC solenoids and dipoles
 - Magnatic strength error: σ = 0.1% for all magnets
 - RF gradient error: σ = 1% for all RF structures
 - RF **phase** error: σ = **0.1°** for all RF structures
 - Beam position jitter (x, y): σ = 100 um for e⁺ beam from target
 - Beam angular jitter (x', y'): σ = 100 urad for e⁺
 beam from target

- 100 random machines with imperfections
- Compared with perfect machine:
 - Average DR accepted e+ yield reduction: 1.3% (3.01 → 2.97)
 - Average normalized X / Y emittance increase: 0.4% / 0.8% (13.1 / 13.0 mm → 13.2 / 13.1 mm)
- Impact of considered imperfections is negligible

Conclusion and outlook

- Solid design of the linacs. Ready for documenting in FS report.
- Few minor points on the top-up operation with "golden" pulse to be checked:
 - Bunch-to-bunch energy spread in e- and p-linac and DR acceptance
 - Bunch-to-bunch energy spread in e-linac and impact on positron production
- Next steps for 2025 pre-TDR phase,
 - Move to 3GHz
 - Fit in the CERN site constrains