WP3 update Positron Source: Target and Capture System

Iryna Chaikovska on behalf of the WP3 team

05 December 2024

Towards FS report

- Baseline design relies on the HTS solenoid. The accepted e⁺ yield is ~3 N_{e+}/N_{e-}. So far, no showstoppers found that prevent a SC solenoid matching device (proof-of-principle with P³ experiment @PSI in 2026).
- For 2.86 GeV injector option, to fulfil the requirements for positron bunch charge, higher e⁻ drive beam charge is needed (~4.5 nC).
- The results are based on start-to-end simulations from production target to the DR using the realistic fieldmaps including collective effects and machine imperfections. The preliminary studies show negligible impact of typical imperfections (~1 % reduction in e⁺ yield and < 1% emittance increase).
- Radiation load studies with FLUKA and target design.

FLUKA model of the e⁺ source

and a second s

*A safety margin of 2.5 is currently applied for the whole studies (50% losses for injection in the DR + 20 % losses from target up to the end of the e+ linac)

<u>Accepted e⁺ yield</u> is a function of primary beam characteristics + target + capture system + DR acceptance

Beam energy	2.86 GeV	
Bunch charge	~5.6 nC (max)	
Bunch length	1 mm	
Bunch transverse size	≳ 0.5 mm	
	Beam energy Bunch charge Bunch length Bunch transverse size	

Nb of bunches per pulse	4
Bunch separation	25 ns
Repetition rate	100 Hz
Beam power	~ 6.4 kW (max)

 \rightarrow positron flux of $\sim 1.3 \times 10^{13} \text{ e}^{+/\text{s}}$ (×2.5). Demonstrated at SLC (a world record for existing accelerators): $\sim 6 \times 10^{12} \text{ e}^{+/\text{s}}$

- Energy = 2.86 GeV
- Beam size (x, y) rms = 1 mm
- Beam position (x, y) = 0 mm
- Bunch length rms = 1 mm
- Energy spread rms = 5e-3
- Divergence (xp, yp) = 0.715 μ rad, (px, py) = 2.04 KeV/c.
- Normalized emittance $(x, y) = 4 \mu m rad$.
- Statistics (Geant4) = 50k
- <u>Simulation performed w/o mesh.</u>

Beam matching section upstream the target (flexibility in beam size @Target)

Positron source physics design

Positron production : conventional scheme (e- beam size on target = 1 mm rms). Target exit located at 40 mm w.r.t. HTS solenoid peak field.

Matching device is based on the SC solenoid (5 HTS coils, \emptyset 60 mm 72 mm bore, \emptyset 60 mm including shielding)

Capture linac is based on the 6 L-band TW RF structures (2 GHz, \emptyset 60 mm, 3-m long)

NC solenoid B = 0.5 T (realistic conventional design based on the short coils B = 0.31 T) + short "tuning" solenoid B = 0.25 T before the 1st RF structure

<u>RF structures</u>: 2GHz L-band with aperture (2a) = 60 mm , 3 m-long and 13.3 MV/m.

<u>Solenoids</u>: 10 NC short solenoids
surrounding each RF structure to create
0.5 T magnetic channel.

- <u>Chicane</u>: 4 dipoles (0.2 T) to separate e- and e+, with electron stopper at the middle.

F. Alharthi. Y. Wang

 $1/_4$ view of chicane region

Positron source physics design

Y. Zhao

Summary of the simulation results

Parameter	Unit	
e ⁻ beam energy	GeV	2.86
Number of bunches		4
Repetition rate	Hz	100
e ⁻ bunch charge	nC	4.01
e ⁻ beam power	kW	5.1
Target thickness	mm	15
Beam size, x/y	mm	1
Positron yield @ Target	Ne ⁺ /Ne ⁻	7.1
Positron yield @ CS *	Ne ⁺ /Ne ⁻	4.2/3.9/3.6
Positron yield @ PL**	Ne⁺/Ne⁻	3.37
Positron yield @ DR***	Ne ⁺ /Ne ⁻	2.97
Target deposited power	kW	1.2
Target PEDD	J/g	6.8
e ⁺ beam emittance, ε _n x/y	mm.rad	13.5/13.6

* Yield before chicane/ after chicane/ @ s1 point (2 RF structures after chicane)

** full beam

*** Estimated with the cut window

DR acceptance window: (Energy : 2.86 GeV ± 2 %; Time : ± 10 mm/c)

Emittance is estimated for the full e⁺ beam

F. Alharthi. Y. Wang, Y. Zhao

For the latest 2.86 GeV: date (09/10/24) Beam Emittances: $em_x = 2.38e-06 m^*rad$ $em_y = 2.38e-06 m^*rad$

Beam normalized Emittances: em_x_n = 13.3 mm*rad em_y_n = 13.3 mm*rad For the latest 2.86 GeV: date (06/12/24) Beam Emittances: $em_x = 2.41e-06 m^*rad$ $em_y = 2.43e-06 m^*rad$

Beam normalized Emittances: Normalised Emitt_X : 13.5 mm*rad Normalised Emitt_Y : 13.6 mm*rad

For the latest 1.54 GeV (6 GeV e- drive beam): (03/06/24) Beam Emittances: $em_x = 3.52e-06 \text{ m}^*rad$ $em_y = 3.72e-06 \text{ m}^*rad$

Beam normalized Emittances: em_x_n = 10.6 mm*rad em_y_n = 11.2 mm*rad