HELinac to Booster Transfer

Update 05/12/2024 FCCee Injection Design P. Arrutia

1

Line geometry & beam parameters

Beam transport approx. 4.7 km long, simultaneous horizontal and vertical bending, and tight bend (R=300m) of 80 deg -> great care needed to preserve beam parameters!

Table 17: Summary of Sector Parameters.						
Sector	Bunch len. (mm)	RMS dp/p (10^{-3})	$\epsilon_{x,N}$ (µm)	$\epsilon_{y,N}$ (µm)		
()						
HE Linac	1	7.5	16	1.6		
E. Compressor	4	0.9	16	1.6		
Transfer	-	-	-	-		
Booster Inj.	4	1	20	2		
()						

Figure 23: X suite survey output and reference trajectory provided by Civil Engineering. The colour bar shows the local roll angle ψ_{MADX} , which is necessary to maintain a constant vertical slope in the global frame.

Line geometry & beam parameters

Beam transport approx. 4.7 km long, simultaneous horizontal and vertical bending, and tight bend (R=300m) of 80 deg -> great care needed to preserve beam parameters!

Table 17: Summary of Sector Parameters.							
Sector	Bunch len. (mm)	RMS dp/p (10^{-3})	$\epsilon_{x,N}$ (µm)	$\epsilon_{y,N}$ (µm)			
()							
HE Linac	1	7.5	16	1.6			
E. Compressor	4	0.9	16	1.6			
Transfer	-	-	-	-			
Booster Inj.	4	1	20	2			
()							
0 -500 -1000 N -2000 -3000 -3500		0 - Xsi -50 - -100 - -150 - -200 -	iite survey	0 2 4 (53p)) 6 -8			

Figure 23: X suite survey output and reference trajectory provided by Civil Engineering. The colour bar shows the local roll angle ψ_{MADX} , which is necessary to maintain a constant vertical slope in the global frame.

1000

X (m)

1000

2000 3000 4000

s (m)

-1000

Conclusion & Next steps

- Cannot heavily rely on ring's "equilibrium" parameters -> Important to include impact of transfer line on "beam parameters" budget
- Dispersions up to 1.2 m along the line -> maximum dp/p jitter +-3e-3=+ 3.6mm to avoid aperture limitations (+-15 mm aper).
- With current design, bunch length and dpp-spread blow-up below 5%.
- Transport feasible, but **further work needed** beyond FSR:
 - Matching sections between HE-LINAC, different sectors and booster.
 - Impact of errors on beam quality.
 - Non-FODO cells to alleviate constraints from R=300m bending sector.

Extra material

Figure 24: Horizontal emittance blow-up, bending field, quadrupole gradient and aperture as a function of cell half length and dipole fill factor.