

Design, Parameters and Beamdynamics

CLIC Project Meeting Wednesday December 11th, 2024

Daniel Schulte, Vera Cilento, Andrea Latina et al.

Previous Parameters

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	${ m GeV}$	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$10^{34}{ m cm^{-2}s^{-1}}$	2.3	3.7	5.9
Lum. above 99% of \sqrt{s}	$10^{34}{ m cm^{-2}s^{-1}}$	1.3	1.4	2
Total int. lum. per year	fb^{-1}	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	${\sim}60/1.5$	${\sim}40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

CLIC study Snowmass submission

 \Rightarrow Chapter 2, with adjustment

New Energy Stages

380 GeV remains baseline

250 GeV initial option

• Build 380 GeV tunnel but only install about $2/3^*$ of the accelerating structures in each drive beam sector

1.5 TeV potential upgrade

- Could go to 2 TeV with single drive beam (parameters?)
- Upgrade path remains similar to previous designs

*More precisely (250-9)/(380-9)

Luminosities

Luminosity at lower energy can be better

- Same margins at all energies but need less in main linac and BDS
- Required 90% likelyhood to meet static performance in each system not overall

Could increase luminosity at 380 by 50%

Can double repetition rate to 100 Hz

• Needs to address two different feedback states

Alexei Grudiev et al.

Can feed two detectors Need to check switching frequency (stored energy in dipoles?)

As consequence $L=2.25 \times 10^{34}$ cm⁻²s⁻¹ and $L=4.5 \times 10^{34}$ cm⁻²s⁻¹ is possible at 380 GeV

At 1.5 TeV remain at $L=3.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

At 250 GeV scale with energy L=1.5(1.48)x10³⁴ cm⁻²s⁻¹ and L=3(2.96)x10³⁴ cm⁻²s⁻¹

Reminder: Improved Luminosity

Could increase luminosity at 380 by 50%

Old target: $L=1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ Achieved in perfect machine: $L=4.3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Average with static imperfections: $L=3x10^{34}$ cm⁻²s⁻¹ 90% are better than $L=2.35x10^{34}$ cm⁻²s⁻¹

Average also with ground motion: $L=2.8 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 90% achieve L>2.3x10³⁴ cm⁻²s⁻¹

Adjust horizontal beam size for each case (differs from Chet's presentation, but in published paper)

Very small impact of other imperfections

In addition, reduced emittance growth in RTML and ML $L=2.25 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ is realistic

Documented for Snowmass, Explained in chapter 2

C. Gohil, P.N. Burrows, N. Blaskovic, A. Latina, J. Ogren, D. Schulte

Main Linac Emittance Growth

Use of tuning knobs in main linac reduces emittance growth

Note: full integration unfortunately not yet done

Table 2: RMS Element Misalignments after the Prealignment

Imperfection	With respect to	Value	
Girder end point	Wire reference	12 µm	
Girder end point	Articulation point	5 µm	
Cavity offset	Girder axis	14 µm	
Cavity tilt	Girder axis	141 µrad	
Quadrupole offset	Girder axis	14 µm	
Quadrupole roll	Longitudinal axis	100 µrad	
BPM offset	Wire reference	14 µm	

BDS Status: One IR

- Optimization of the 1.5 TeV design is ongoing (L. Kenendy), with a potential reduction in length of 500 to 800 meters.
- Using the option with the reduced β^* optics (A. Pastushenko) could improve the performace by 2%.
- Further optimization of the 380 GeV design length may still be possible in the future.

Two	IR	Design
-----	----	--------

CLIC Dual BDS at 380 GeV					
	IR1	IR2			
Final drift L^* $[m]$	6	6			
FFS length $[m]$	770	770			
BDS length $[m]$	2294	2256			
Norm. emittance (IP) $\epsilon_{n,x}/\epsilon_{n,y}$ [nm]	920/15	920/15			
Beta function (IP) β_x^*/β_y^* [mm]	8/0.1	8/0.1			
Beam size (IP) σ_x^*/σ_y^* [nm]	140/2.3	140/2.29			
Bunch length $\sigma_z \ [\mu m]$	70	70			
$\mathbf{Energy spread} \delta_p [\%]$	0.3	0.3			
Bunch population $N \ [\times 10^9]$	5.2	5.2			
Number of bunches N_b	352	352			
Repetition rate f [Hz]	50	50			
Crossing angle [mrad]	16.5	26			
Total luminosity $\mathcal{L}_{tot} [10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.4	2.36			

- Possible solutions for insufficient space include adding shielding or incorporating a vertical bending magnet in BDS2. This option still requires further optimization but appears feasible, with a luminosity loss of 7% for a 0.4 m vertical offset.
- Using the option with the reduced β^* optics (A. Pastushenko) could improve the performace by 2%.

Main Beam Injectors

Y. Zhao, A. Kurtulus, A. Latina, A. Grudiev, S. Doebert

Positron source:

- Start-to-end optimisation of the positron source
- Electron driver energy reduced from 5 GeV to 2.3 GeV
- \checkmark Final positron yield: ~1.8 (380 GeV) 2.4 (3 TeV)

Rings to Main Linac:

- Bunch Compressor 2: X-band RF power consumption reduced by 50%
- **Booster: new RF design** of the L-band structure optimised for multi-bunch operation
- Beam-Based Alignment performance: improved for robustness
 - Allows for tighter emittance budgets

Robust multi-bunch beam dynamics studies in collaboration with RF experts

AMD field
 Type 0 solenoid field

Positron target region and optimised capture device (prototyped)

CLIC Project Meeting, D. Schulte, V. Cilento, A. Latina et al.

Proposal for a new Optimised Layout

CERN

• Old (baseline)

• New (alternative)

Operational Scenarios

Operate 10 years at each energy

Ramp-up as before

- First stage first three years with 10%, 30%, 60%
- Following stages ramp-up as 25% 75%

As before 1.2×10^7 s luminosity per year

This yields:

- 380 GeV at 2.25x10³⁴ cm⁻²s⁻¹ yields 2.2 ab⁻¹
- 380 GeV at 4.5x10³⁴ cm⁻²s⁻¹ yields 4.3 ab⁻¹
- 250 GeV at 1.5x10³⁴ cm⁻²s⁻¹ yields 1.4 ab⁻¹
- 250 GeV at 3.0x10³⁴ cm⁻²s⁻¹ yields 2.8 ab⁻¹
- 1.5 TeV at 3.7x10³⁴ cm⁻²s⁻¹ yields 4 ab⁻¹

Ph. Lebrun, L. Linssen, D. Schulte, S. Stapnes, E: Adli et al.

 \Rightarrow Chapter 2

Distribution of beam on both experiments to be defined