Readiness Report, The systems chapter

Overview of the chapter

□ Main changes with respect to the PIP report

Conclusion

CLIC Project Meeting Dec. 11th 2024 Steffen Doebert on behalf of all the chapter contributors

Chapter 3, Systems Overview

3	Syst	em Overview 2	24
	3.1	Introduction	24
	3.2	Main-Beam Injectors	24
	3.3	Damping Rings	26
	3.4	Ring To Main Linac Sections	28
		3.4.1 System Description	28
		3.4.2 Design Choices	28
		3.4.3 Beam Performance	29
	3.5	Main Linacs	31
		3.5.1 Overview	31
		3.5.2 Beam Parameters	31
		3.5.3 Linac Layout and Optics	31
		3.5.4 Accelerator Physics Issues	32
		3.5.5 Components	33
	3.6	Beam Delivery System	33
		3.6.1 BDS Optics Design	34
		3.6.2 FFS Tuning	35
	3.7	Machine Detector Interface	37
	3.8	Post-Collision Line	38

3.9	Drive-Beam Accelerator
	3.9.1 Introduction
	3.9.2 Drive-Beam Injector
	3.9.3 Drive-Beam Accelerator
3.10	Drive-Beam Recombination Complex
	3.10.1 Overview
	3.10.2 System Description
	3.10.3 Performance
	3.10.4 Design Updates
	3.10.5 Longitudinal Phase Space Effects
	3.10.6 Imperfections
3.11	Decelerators
	3.11.1 Overview
	3.11.2 Beam Parameters
	3.11.3 Drive-Beam Dump Lines
3.12	Integrated Performance
	3.12.1 Luminosity and Parameters
	3.12.2 Luminosity and Imperfections 40

Contributions by: Yannis, Andrea, Yongke, Daniel, Vera, Rogelio, Raul, Alexej, Adnan, Igor...

Main intended changes

- Redesign of the main beam injector complex, aim to save cost and electricity.
 New RF structure design, focus on 380 GeV, higher positron yield, lower drive linac energy, new layout
- New drive beam klystron, higher efficiency, number of klystrons, RF-structure parameters, some updates in the beam dynamics of the combination complex and decelerators
- > DR updates, new 2 GHz RF-system integrated, updated performance
- RTML optimization, new bunch compressors, performance optimization, new booster accelerating structure
- > Luminosity performance updates, emittance bumps and machine tuning
- Beam delivery: Performance and layout updates (here only 380 GeV)
- > Not much new in: Main linac, post collision line and machine-detector interface

Main Beam Injectors New design and layout

Edward Fraser Mactavish et al.

Drive Beam

New klystron, beam dynamics update

New ideas for CLIC 1GHz klystron for DB linac

Infrastructure and Services

Controls and Operation

- 1 MW

Infrastructure and Services

Controls and Operation

Details: Alexej Grudiev, CLIC Mini Week, Dec. 2023

RTML,

New optimized bunch compressors, booster linac, BBA and beam transport

- Results (100 random misaligned machines)
 - 91% good machines (required: 90%)
 - To be optimised, though satisfied
 - * To understand why X emittance is much better than Y

Parameter	Unit	Old		New	
		CDR	PIP	Baseline	Alternative
BC1 RF total voltage	MV	399	477	450.5	
BC1 structure length	m	1	.5	1.5	
BC1 RF gradient	MV/m	13.3	15.9	18.770	
BC1 RF peak power	MW	23.8	34.0	47.3	
BC1 RF-to-beam efficiency	%	24.8	22.9	20.8	
BC1 number of klystrons		10(6)	10	8	
BC1 number of RF structures		20		16	
C2 RF total voltage MV		1686.4	1763.0	6	59.3
BC2 structure length	m	0.	23	0.275	0.275
BC2 structure aperture	mm	3.63	5.44	3.33	
BC2 RF gradient	MV/m	94	98.27	74.916	37.458
BC2 RF peak power	MW	88.4	355.6	39.3	9.8
BC2 RF-to-beam efficiency	%	24.5	7.5	45.1	56.5
BC2 number of klystrons		40	156	8	4
BC2 number of RF structures		78		32	64
BL total voltage	MV	6168.6		6156.3	
BL structure length	m	1.5		1.5	
BL RF gradient	MV/m	14.9		15.089	
BL RF peak power	MW	54.1		55.1	
BL RF-to-beam efficiency	%	20.0		19.9	
BL number of klystrons		138		136	
BL number of RF structures		276		272	

Main LINAC, Emittance tuning Bumps, BBA performance

Details: A. Pastushenko, internal CLIC Meeting

Conclusions

The chapter should be ready on time but of course last minute !