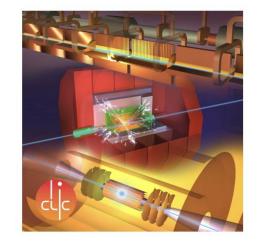
CERN-2024-nnn-M 31 December 2024


CLIC Readiness Report (RDR) Project Meeting Update

Erik Adli, Steinar Stapnes, Mick Draper

and all contributors

December 11, 2024

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE **CERN** EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

THE COMPACT LINEAR COLLIDER (CLIC) READINESS REPORT

What to deliver

As support to the ESPPU, and as a future reference for CLIC:

The CLIC readiness report (RDR). Long document.

- Much based on the 2018 Project Implementation Plan (PIP)
- Updated where needed (parameters, energy options, new developments)
- Completed with implementation details not found in the PIP
- RDR will be **published as an European Physical Journal** article (template)
- Author list still TBD but will be inclusive :
 - current collaboration?
 - + earler lists from PIP+Snowmass with an **opt-out?**

As input to the ESPPU:

A 10 pages summary.

• Based on the updated RDR.

Baseline vs options

- Baseline: 380 GeV machine "low-energy machine"
 - Main parameters, system overview and technology details should primarly refer to 380 GeV. Base luminosity 50% higher than in the PIP (see next talk)
 - Keep details on klystron options, no further development planned
 - Option: 100 Hz, with 65% higher power
 - At 100 Hz: two BDS and IPs
- Option: 250 GeV
- High-energy machine: 1.5 TeV
 - Re-use previous studies
 - Mention up to 2 TeV with a single drive-beam, 3 TeV with two drive-beams
 - No work planned for the 3 TeV machine, but one can refer to the CDR when needed

$\operatorname{Contents}$

1 Introduction

2.1	IC accelerator design and performance Introduction
2.2	CLIC design and performance at 380 GeV
	2.2.1 Design overview
	2.2.2 Operation with two detectors at 100 Hz
	2.2.3 Main-beam design considerations and choices
	2.2.4 Beam dynamics and nanobeams
	2.2.4 Deam dynamics and nanobeams 2.2.5 Beam experiments
	2.2.7 Operation and availability
	2.2.8 Annual and integrated luminosities, energy flexibility
2.3	CLIC 250 GeV option
	2.3.1 Motivation
	2.3.2 Performance
2.4	A klystron-based CLIC
	2.4.1 Design choice
	2.4.2 Design implications
	2.4.3 A klystron-based CLIC at 250 GeV
2.5	
2.0	Extension to higher energy stages
	2.5.1 Upgrade path from 250 GeV to 380 GeV
	2.5.2 Baseline design upgrade
	2.5.3 Upgrade from the klystron-based option

Workflow

- One master document
- Copy to all authors for specific updates
- Plan is to merge...

२ readiness report	×	
Title	Owner	Last Modified ↓
CLIC Readiness Report (SPRINGER) - MASTER	You	6 minutes ago by You
CLIC Readiness Report (SPRINGER) - COPY ANDREA	You	a day ago by Andrea Latina
CLIC Readiness Report (SPRINGER) - COPY ROGELIO, VERA	You	4 days ago by You
CLIC Readiness Report (SPRINGER) - COPY DANIEL	You	4 days ago by You
CLIC Readiness Report (SPRINGER) - COPY CH5 (John, Edwart, Steinar, Carlo, Alexej)	You	11 days ago by You
CLIC Readiness Report (SPRINGER) - COPY YANNIS	You	a month ago by You
CLIC Readiness Report - Technology - COPY Nuria	mick.draper	a month ago by mick.drap
CLIC Readiness Report - Technology	Steinar Stapnes	a month ago by mick.drap
CLIC Readiness Report (SPRINGER) - COPY STEFFEN	You	a month ago by You
CLIC Readiness Report (SPRINGER) (Copy) - BACKUP EA 20 SEP 2024	You	2 months ago by You
CLIC Readiness Report (SPRINGER) (Erik Adli Copy)	You	2 months ago by You
CLIC Readiness Report	Steinar Stapnes	2 months ago by mick.dra

Contents

1 Introduction

2	\mathbf{CL}	IC accelerator design and performance
	2.1	Introduction
	2.2	CLIC design and performance at 380 GeV
		2.2.1 Design overview
		2.2.2 Operation with two detectors at 100 Hz
		2.2.3 Main-beam design considerations and choices
		2.2.4 Beam dynamics and nanobeams
		2.2.5 Beam experiments
		2.2.6 Two beam acceleration
		2.2.7 Operation and availability
- 4		2.2.8 Annual and integrated luminosities, energy flexibility
ates	2.3	CLIC 250 GeV option
		2.3.1 Motivation
		2.3.2 Performance
	2.4	A klystron-based CLIC
		2.4.1 Design choice
		2.4.2 Design implications
		2.4.3 A klystron-based CLIC at 250 GeV
	2.5	Extension to higher energy stages
		2.5.1 Upgrade path from 250 GeV to 380 GeV
		2.5.2 Baseline design upgrade
		2.5.3 Upgrade from the klystron-based option
3	Suc	tom Ouenview
э	3.1	tem Overview Introduction
	3.2	Main-Beam Injectors
	3.2	Damping Rings
	0.0	3.3.1 Component overview ***Example
	3.4	Ring To Main Linac Sections
	0.4	3.4.1 System Description
		3.4.2 Design Choices
		3.4.3 Beam Performance
		3.4.4 Component overview
	3.5	Main Linacs
******	0.0	3.5.1 Overview
1		3.5.2 Beam Parameters
****		3.5.3 Linac Layout and Optics
******		3.5.4 Accelerator Physics Issues
· · · · · · · · · · · · · · · · · · ·		3.5.5 Components
	20	Deliner Components

Examples:

Main Beam – Damping Rings (1/2)

Based on inputs from Y. Papaphilippou

PDR	Magnet Type	Quantity	Cost Avg Unit (kCHF)	Total cost (kCHF)	Comment
	D17	38	208.2	7911	
	Q30L20	36	63.7	2292	
	Q30L28*	128	72.9	9327	Scaled from Q30L20
	Q30L35*	32	75.8	2426	Scaled from Q30L20
	S300	110	36.4	3999	
	ST03	156	18.2	2836	
	SKQ5	38	20.0	760	
			TOTAL	29551	

*Q30L28 and Q30L35: new types in 380 GeV baseline

Main Beam – Beam	Transport (RTML)
------------------	------------------

Description to the former A	Element name	Units	Cost/unit [kCHF]	Total cost [kCHF]	Comment
 Based on inputs from A. 	D1	6	38.9	234	
Latina	D2T1	29	46.4	1345	
Latilla	D2T2	659	49.2	32404	
- In the data second and have been	D3	16	122.0	1951	
 Includes e- and e+ beams 	D4	8	87.7	702	
	Q1	292	38.3	11193	
 No specifications for 	Q2	144	27.8	3997	
	Q3T1	89	17.2	1532	
corrector magnets yet,	Q3T2	34	20.5	699	
considered initial amount	Q3T3	280	23.6	6615	
	Q4T1	36	8.0	287	
of 5 kCHF/magnet	Q4T2	357	10.1	3622	
or 5 Kern / Hugher	Q4T3	354	11.8	4164	
	Q5	87	5.6	485	
	SX1	12	19.7	236	
	SX2	529	12.4	6572	
	Correctors*	1673	4.1	6940	Preliminary estimate 5 kCHF/mag
	Total	4605		82976	

Main Beam – Beam Delivery System (2/2

One per quadrupole, no parameters defined ye

Magnet Type	Quantity	Cost Avg Unit (kCHF)	Total cost (kCHF)	Magnet Type	Quantity	Cost Avg Unit (kCHF)	Total cost (kCHF)	Magnet Type	Quantity	Cost Avg Unit (kCHF)	Total cost (kCHF)
B3A	48	15.06	723	QF5A	4		195	TQD28	2	111.06	222
B3B	.48	15.06	723	QF58	4	46.01	184	AEDDT	2	104.08	208
84A	48	20.00	480	QF8	2	10.00	20	TQD38	2	104.08	208
B4B	48	10.00	480	QFBCOL	36		1840	TQD4A	2	111.99	224
BTFQ1	2	222.65	445	QFEC	16	53.07	849	TQD48	2	111.99	224
BTFQ2	2	149.22	298	QMD11	2	116.02	232	TQD5	2	131.88	264
BTFQ3	2	155.06	310	QMD12	2	178.69	357	TQD6A	2	35.33	71
BTFQ4	2	171.39	343	QMD13	2	150.35	301	TQD68	2	35.33	71
FQD	2	131.88	264	QMD14	2	85.3	171	TQD7A	2	35.33	71
FQD2	2	48.8	98	SDO	2	335	670	TQD78	2	35.33	71
FQF	2	164.61	329	SD4	2	60.5	121	TQD8	2	179.13	358
FQFZ	2	161.48	323	SD5	2	134.06	268	TQD9	2	228	456
QCBCOL	36	76.22	2744	SDSL	2	10,00	20	TQF	2	164.61	325
000	4	335	1340	SD5R	2	10.00	20	TQFZA	2	112.99	226
QD18C	16	51.1	818	SF1	2	43.83	88	TQF28	2	112.99	226
QD2	2	31.23	62	SF5	2	38.69	77	TQF3A	2	72.33	145
APOD	2	29.8	60	SF6	2	57.47	115	TQF38	2	72.33	145
QD4B	2	29.8	60	SFFB1	20	10.00	200	TQF4A	2	112.99	226
QD6B	4	35.2	141	SFFB2	20	11.05	221	TQF4B	2	112.99	226
QD6C	2	36.62	73	SFFB3	20	13.8	276	TQF5A	2	72.33	145
QD7	2	47.66	95	SFFB3B	20	11.05	221	TQF5B	2	72.33	145
ODBCOL	16	98.38	1574	SFFB4	20	10.00	200	TQF6A	2	61	127
QDEC	16	25.94	415	SFFSB1	80	10.00	800	TQF68	2	61	122
QF1	2	87.71	175	SFFSB1A	20	10.00	200	TQF7A	2	35.33	71
QF1BC	8	73.44	588	SFFSB1B	20	30.00	200	TQF78	2	35.33	71
QF2BC	8	37.21	298	SXEC2	16	10.00	160	TQF8A	2	35.33	71
QF3A	2	27.06	54	SYEC2	32	10.00	320	TQF88	2	35.33	71
QF38	2	20.81	42	TQD	2	187.47	375	TQF9	2	210.28	421
				TOD2A	2	111.06	222		1	TOTAL	27483

Addition of component overview

- Details of subsystem component exist, but are sometimes not included in PIP (or any other formal doc)
- Goal: add a subsection with component summary for each subsystem
 - magnets
 - RF (# structures, klystrons, modulators)
 - instrumentation
 - etc.
- Example: magnet system summaries in

2018 CLIC PBS External Review

Deadlines

- Status report from (some) authors: Wed 11 Dec, 2024
- Completed input from authors: January 15, 2024
- Complete draft of RDR: February 15, 2025
- Final draft of 10 page summary: Mar 1, 2025
- 10 page summary submission: Mar 31, 2025
 - Complete RDR available together 10 page summary as supporting document
- EPJ review process starts for RDR
- Submission of RDR by Summer 2025