

Inclusive results for diboson in semi-leptonic channels

Semi-leptonic decay channels in multiboson production: joint WG1+WG3 meeting

> 20th November 2024 https://indico.cern.ch/event/1473356/

Antonio Giannini

antonio.giannini@cern.ch

Today menu

VV semi-leptonic channel

- Introduction
 - motivation and definition
- Latest available experimental results
 - WV in Run-1!!!
 - VZ (heavy flavour) in Run-2
- What if...we would like to do a VV semileptonic measurement today
 - walk through what has been done in Run-1 with future perspectives
- Wrap-up
 - EFT and polarisation considerations
 - Conclusions

Why diboson Physics?

- Diboson interactions are a key process in the LHC program
 - according to the EWK sector the
 W_LW_L scattering is violating the
 unitarity at the TeV scale
 - we expected something to happen with the LHC era
- After the Higgs discovery, we can say that the Higgs+EWK sector can mitigate this
 - however, this still needs to be directly confirmed at very high energy
- High-energy diboson interactions may still hide new physics!

arxiv.1412.8367

Usual (run-2) practice

- During the Run-2 data analyses
 - VV cross section measurements
 - differential measurements
 - EFT interpretation in several channels
- All of this using leptonic channels
 - ▶ WW (IνIν), WZ (IνII), …

COMETA: joint WG1+WG3 meeting

Semí-leptonic channel definition

- First, we need to define what is a semi-leptonic diboson channel
 - one of the two bosons decays *leptonically* and one *hadronically*
- In other terms (0-/1-/2-lepton)
 - ▶ WV $\rightarrow I\nu qq$, ZV $\rightarrow \nu \nu qq/Ilqq$
 - with V = W, Z
- ATLAS tried to harmonise and merge all the channels together during Run-2 (resonant searches and VBS measurements); CMS usually considers the channels separated

BR(VV—>1234)		WΙν	Ζ νν	ZII	W qq	Z qq
		21,6	20,5	6,8	67,6	69,2
W Iν	21,6	4,7	4,4	1,5	14,6	14,9
Ζ νν	20,5	-	4,2	1,4	13,9	14,2
ZII	6,8	-	-	0,5	4,6	4,7
W qq	67,6	-	-	-	45,7	46,8
Z qq	69,2	-	-	-	-	47,9

fully-leptonic semi-leptonic fully-hadronic

Why semi-leptonic channel?

- There are remarkable cross section measurements in leptonic channels, why should we consider semi-leptonic?
 - these decay channels are not covered, is this enough to motivate analyses?
- There are actually other interesting/motivating physics considerations:
 - more signal events (higher BRs) potentially accessible
 - higher boson p_T (m_{VV}) phase space can be accessed
 - channels with higher cross section with fully reconstructed final states,
 - \triangleright Z(II)W(qq) + Z(II)Z(qq) vs Z(II)Z(II)

MM

Experimental results

Reference = [ATLAS, CMS]

- Inclusive VV measurements (+ EFT)
 - 7 TeV cross section, WW/WZ Ivjj [1, 2]
 - ▶ 8 TeV cross section + aTGC, WW/WZ lvjj/J [3, 4]
 - 8 TeV cross section, VZ(bb) (νν/Ιν/ΙΙ jj) [5]

VBS VV measurements

- 13 TeV, cross section 36/fb VV semi-leptonic [6]
- 13 TeV, evidence 139/fb WV semi-leptonic [7]
- VV searches
 - a bunch during run-2, both inclusive and VBF phase space, llqq [8, 9], lνqq [8, 10], ννqq [8, 11]
- Vh(bb/cc) measurement
 - 13 TeV, observation 140/fb Vh semi-leptonic [12, 13]

Giacomo's talk

Andrea's talk

Current cross section results

- ATLAS and CMS measured the cross section in Run-1 last time
- Complementary results
 - agreement with SM with relative large uncertainties
 - **WV:** 4.5 σ (5.2 σ) observed (expected)
 - **VZ:** 4.1 σ (4.6 σ) observed (expected)

What did we learn so far?

- SM VV semi-leptonic process has been explored already at the time of Run-1
 - very close to the observation (not all the VV channels were combined...)
- It has been somehow forgotten during Run-2...
- Nevertheless, it has been always at our hand since it represents a significant background in
 - high mass VV searches
 - Vh(bb/cc) measurements

Observation in VZ channels

- ATLAS Run-2 Vh semi-leptonic measurement
 - V decaying leptonically
 - h(bb) resolved/boosted, h(cc) resolved
- The diboson process represents a background to the Vh production and it is used as a validation
 - a side measurement has been done in the

	b	b	С	С
	obs	exp	obs	ехр
wz	6.4σ	6.5σ	3.9σ	2.7σ
ZZ	>10σ		3.1σ	4.3σ
٧Z	>10σ		5.2σ	5.3σ

11

What if...

- All right, this channel has been somehow forgotten during Run-2
- What if..."I would like to do the analysis with Run-2/-3/HL"?
 - "can you guide us through the challenges?" yes, let's do that
- How to...semi-leptonic

- SM background contribution and estimation
- MC predictions
- analyses techniques
- fiducial phase space definition

Background composition and prediction

- How to save events? Trigger selection
 - data recorded using single-lepton and MET triggers
- SM background processes
 - data dominated by V+jets events
 - ttbar also contributes, according to the

• Theory predictions

	Run-1	On the market
VV	MC@NLO v4 + Hw6	Sherpa 2.2.11+
V+jets	Sherpa 1.4.1	Sherpa 2.2.11+

Analysis techniques

- The ability of the jets reconstruction can affect these channels
 - significant improvement in jets reconstruction and calibration
- ▷ small-R jets: EMTopo -> ParticleFlow (PFlow)
- Iarge-R jets: LCTopo —> Track Calo Clusters (TCC)
 - -> Unified Flow Objects (UFO)

- Boosted regime
 - ▶ crucial to exploit the potentiality of these channel in higher p_T/m_{VV} regimes
 - Iower signal efficiency but also much lower background

More on boson tagging

UFO jets reconstructions

- optimal reconstruction combining calorimetric information to track information both at low and high-p_T
- new calibration techniques

Machine learning and jet sub-structure

- tag 2-prong like jets, i.e. boson tagging W/Z vs q/g
- huge progress during Run-2 thanks to new techniques

COMETA: joint WG1+WG3 meeting

15

Background estimation

Control regions

dedicated Top-CR and Vjets-CR to constraint the backgrounds

• MC modelling

- modelling uncertainties are significant
- V+jets mis-modelling, ad-hoc MC-to-data reweighing to improve predictions (same also in VBS phase space in Run-2)

New techniques for data-driven estimations?

Other analysis features

Fiducial phase space definition

- A fiducial phase space at the particle level is an usual method to extract the measurement
- Defined to mimic the reconstruction level definition
 - might not be trivial to mimic the substructure information for boosted regimes

Final discriminant

- The Run-1 analyses used the reconstructed boson mass to extract the signal strength
 - modern SM measurement usually relies on Machine Learning discriminants to exploit the full event information

$$\sigma_{\rm fid} = \frac{N^{WV}}{\mathcal{L} \cdot D_{\rm fid}},$$

EFT interpretation

- Data can be interpreted in terms of Beyond SM effects
 - extend the SM Lagrangian using an

Effective Fields Theory

 BSM effects are parametrised as higher dimension operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} O_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Several operators can appear
 - ▶ they can manifest at high p_T ~ m_{VV} phase space
- Run-2 results cover a good range of phase spaces and operators

<u> ATL-PHYS-PUB-2022-037</u>

The latest results on semi-leptonic

- As for the cross section measurement, the latest results for semi-leptonic channels are from Run-1
 - using also the LEP-constrain aTGC parameters
 - the two schemes can be translated
- We now have much higher luminosity and much more advanced analyses techniques!!

 $O_W = (D_\mu \Phi)^{\dagger} W^{\mu\nu} (D_\nu \Phi),$ $O_B = (D_\mu \Phi)^{\dagger} B^{\mu\nu} (D_\nu \Phi),$ $O_{WWW} = Tr[W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}].$

Can we go further?

ത്

/ 60

Events /

10⁵

 10^4

ATLAS

√s=13 TeV, 139 fb⁻¹

WW 1-lepton

ggF/DY merged HP

- As mentioned already, this channel has been one of the leading channel for BSM searches during Run-2
 - best compromise between BR and background contamination
- What can we do more?
 - probe high-p_T tails
- This means we can use this large amount of data to constraint EFT effects

COMETA: joint WG1+WG3 meeting

Data

tt

W+jets

Diboson

Single top

- We have been discussed already the role of hadronic boson decay and interest/ motivations for measurements in diboson channels
 - Polarisation tagging, COMETA workshop Toulouse
- Polarisation measurements
 - the feasibility in different channels runs with our ability to well measure the notpolarised channels first

VV semi-leptonic channel

- Close to the observation in Run-1
 - both WV(qq) and VZ(bb)
- Forgotten channel during Run-2
 - the events are there, it has not never claimed!
 - side measurement of VZ(bb/cc) in the Vh measurement
- Walk through the (ancient) results + future perspective
 - a huge set of new technologies might help in studying this process further
- The era of semi-leptonic is now!
 - enough luminosity to perform SM measurements
 - stay tuned!!!

backup

How do we measure boson polarisation today?

- Boson polarisation has been measured in single W or Z production:
 - W+jets: JHEP 72 (2012) 2001, Phys. Lett. B 107 (2011) 021802
 - Z+ jets: JHEP 08 (2016) 159, Phys. Lett. B 750 (2015) 154
- Also W polarisation in ttbar events
 - ATLAS: <u>Eur. Phys. J. C 79 (2019) 19</u>
 - CMS: <u>Phys. Lett. B 762 (2016) 512</u>
 - Combo: JHEP 08 (2020) 051
- Currently, the experimental interest is about measuring it in diboson events
 - both single and joint boson polarisation has been measured in several final states
 - all of them using leptonic final states

	inclusive	high-p _T	VBS
	-	-	_
	-	-	<u>Phys.Lett. B 812 2021</u>
\\/7	<u>Phys. Lett. B 843 2023</u>	Phys. Rev. Lett. 133	_
	<u>JHEP 07 (2022) 032</u>	-	-
77	<u>JHEP 12 (2023) 107</u>	-	-
	-	-	_

ATLAS link CMS link

How to at high p_ boson regime?

- For high-p_T bosons, > 200 GeV, the 2 bodies decay can not be resolved at the detector level
 - ▶ it seems we can not use the discriminating information of 9_1
- What can we do?
 - look at the jet sub-structure
- How?
 - well known solution in the general boson tagging problem,

i.e. W/Z vs q/g initiated jets

COMETA - Toulouse 2024

Fíducial phase space definition

- A fiducial phase space at the particle level is an usual method to extract the measurement
- Defined to mimic the reconstruction level definition
 - with the huge progress of boson tagging techniques, it might not be trivial to mimic the sub-structure information

	$WV \rightarrow \ell \nu jj$	$WV \rightarrow \ell \nu J$	
Lepton	$N_{\ell} = 1$ with $p_{\rm T} > 30$ GeV and $ \eta < 2.47$		
	$\Delta R(\ell, \mathbf{j}) > 0.4$		
$W \to \ell \nu$	$p_{\rm T}(\ell\nu) > 100 { m GeV}$	_	
	$m_{\rm T} > 40 { m GeV}$	_	
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 50 {\rm GeV}$	
Jet	$N_{\rm j} = 2$ with $p_{\rm T} > 25$ GeV, $ \eta < 2.5$,	$N_{\rm J} = 1$ with $p_{\rm T} > 200$ GeV, $ \eta < 2.0$,	
	$\Delta R(\mathbf{j}, e) > 0.2$	$\Delta R(\mathbf{J}, \ell) > 1.0$	
		No small-R jets with $p_{\rm T} > 25$ GeV, $ \eta < 4.5$,	
		$\Delta R(\mathbf{j}, \mathbf{J}) > 1.0, \ \Delta R(\mathbf{j}, e) > 0.2$	
	$40 < m_{\rm jj} < 200 { m ~GeV}$	$50 < m_{\rm J} < 170 { m ~GeV}$	
	$p_{\rm T}(jj) > 100 {\rm ~GeV}$	_	
	$\Delta\eta({ m j,j}) < 1.5$	_	
Global	$\Delta\phi(\mathbf{j}_1, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.8$	_	

The fiducial cross-section for the signal process is extracted from the fit as described in Section 8, and the result is

$$\sigma_{\rm fid}(WV \rightarrow \ell \nu jj, \text{observed}) = 209 \pm 28(\text{stat}) \pm 45(\text{syst}) \,\text{fb}.$$

The impacts of the various systematic uncertainties on the cross-section measurement are shown in Table 3. The measurement can be compared to the theoretical prediction of

 $\sigma_{\rm fid}(WV \rightarrow \ell \nu \rm jj, theory) = 225 \pm 13 \, \rm fb$.

The extracted fiducial cross-section for the signal process is

$$\sigma_{\rm fid}(WV \rightarrow \ell \nu J, \text{observed}) = 30 \pm 11(\text{stat}) \pm 22(\text{syst}) \,\text{fb},$$

which is compatible with the theoretical prediction of

$$\sigma_{\rm fid}(WV \rightarrow \ell \nu J, \text{theory}) = 58 \pm 15 \text{ fb}.$$

Source of uncertainty	Relative uncertainty for $\sigma_{\rm fid}$
V + jets modelling	60%
Top-quark background modelling	32%
Signal modelling	15%
Multijet background modelling	13%
Large- R jet energy/resolution	45%
Small- R jet energy/resolution	16%
Other experimental (leptons, pile-up)	3%
Luminosity	2%
MC statistics	19%
Data statistics	33%

COMETA: joint WG1+WG3 meeting

