ATLAS CMS results in semi-leptonic VBS

G. Boldrini - CNRS/IN2P3 - LLR, École polytechnique

giacomo.boldrini@cern.ch

Introduction

VBS is a fundamental probe to understand the electroweak symmetry breaking mechanism

 \rightarrow The presence of the **Higgs field regularizes the VBS cross-section** by canceling exactly the E^2 behaviour of bosonic-only processes.

 \rightarrow A delicate equilibrium: if Higgs boson not SM one (δ), energy-growth of $V_L V_L \rightarrow V_L V_L$ cross section hint of new physics

Ongoing activities from ATLAS and CMS on semileptonic VBS signatures \rightarrow VBS W[±]V \rightarrow lvjj

$$\rightarrow$$
 VBS ZV \rightarrow lljj

Instead of focusing on the specific analysis strategies, the **current limitations** as well as **possible future developments** will be discussed

- \rightarrow Modelling of the VBS signal
- \rightarrow Modelling of the dominant background sources
- \rightarrow Semileptonic VBS in a global view

Vector Boson Scattering (VBS) pivotal measurements in the ATLAS/ CMS EW landscape. \rightarrow First interesting results with 35.9 fb⁻¹ from the LHC Run-II (2016)

 \rightarrow Increasing interest in VBS analyses with complex final states at the LHC thanks to the full Run-II luminosity (138 fb⁻¹)

	\sqrt{s}	L	Process	Article	Comments	9 79 72
CMS/		137 fb ⁻¹	EW W $^{\pm}$ W $^{\pm}$ jj(2l2 ν jj)	PhysLettB809(2020)	Run II: » 5 <i>0</i>	XXXXX
C I V I O		137 fb ⁻¹	EW W [±] Zjj(3l <i>v</i> jj)	PhysLettB809(2020)135710	Run II: 6.8σ	V Sm N
Compi		137 fb ⁻¹	EW ZZjj(4ljj)	PhysLettB812(2021)135992	Run II: 4 σ	9
	12 ToV	137 fb ⁻¹	EW Z γ jj(ll γ jj)	PhysRevD.104.072001	Run II: »5 σ	V SS Y
	13 164	138 fb ⁻¹	FW W [±] ~ii(lv~ii)	PhysRevD108(2023)032017	Run II: 6.0 σ	
		138 fb ⁻¹	EW W [±] Vjj(l <i>v</i> jjjj)	PhysLettB834(2022)137438	Run II: 4.4 σ	9
		138 fb '	EW $W^+W^+jj(2l2\nu jj)$	PhysLettB841(2023)137495	Run II: 5.6 σ	
		138 fb ⁻¹	EW W $^\pm$ W $^\pm$ jj($ au$ l2 $ u$ jj)	CMS-PAS-SMP-22-008	Run II: 2.7 σ	
	\sqrt{s}	L	Process	Article	Comments	
		140 fb ⁻¹	EW Z $(u u \gamma j j)$	JHEP06(2023)082	Run II: 3.2 σ	
		140 fb ⁻¹	EW $Z(ll\gamma jj)$	PhysLettB846(2023)138222	Run II: »5 σ	First I HC ovidence
		139 fb ⁻¹	EW ZZjj(4 $l+2l2 u$ jj)	NaturePhysics19(2023)237	Run II: 5.7 σ	T IISt LITE evidence
AILAS	12 ToV	139 fb ⁻¹	EW ZZjj(4ljj)	JHEP01(2024)004	-	of a semileptonic
	13 164	139 fb ⁻¹	EW W $^\pm$ W $^\pm$ jj(2l2 $ u$ jj)	JHEP04(2024)026	Run II: »5 σ	
		140 fb ⁻¹	EW W ⁺ W ⁻ jj(eμννjj)	JHEP07(2024)254	Run II: 7.1 σ	VBS process.
		140 fb ⁻¹	EW W $^{\pm}\gamma$ jj(l $ u\gamma$ jj)	CERN-EP-2024-048	Run II: »5 σ	•
		140 fb ⁻¹	EW W [±] Zjj(3l <i>v</i> jj)	JHEP06(2024)192	Run II: »5 σ	

CMS Semileptonic VBS $W^{\pm}V \rightarrow lvjj$ PhysLettB834(2022)137438

First LHC evidence of a semileptonic VBS process. Final state with 4 jets, one charged lepton + MET. Search for WV VBS where the $W \pm \rightarrow l \pm vl$ and $V(W \pm Z) \rightarrow qq$

- **Resolved regime**: Four R = 0.4 jets resolved in ΔR
- Boosted regime: Two R = 0.4 and one R = 0.8 jets for boosted decays of the V-boson

Backgrounds

- Dominant W+jets production → data driven based corrections needed to simulations
- QCD induced diboson and triboson production
- Drell Yan + jets
- Semileptonic tt and single top
- Non-prompt mainly from QCD-multijet, data driven estimate

Simultaneous fit of 12 regions

$$\mu_{EW} = 0.05 \pm 0.12(\text{stat})_{-0.17}(\text{syst}) = 0.05_{-0.27}$$

$$\mu_{EW+QCD} = 0.97 \pm 0.06(\text{stat})^{+0.19}_{-0.21}(\text{syst}) = 0.97^{+0.20}_{-0.22}$$

 $9r + 0.42(ctat)^{+0.19}(cuct) = 0.9r^{+0.23}$

V hadronic

mass

WV SR

Off-shell

W+jets CR

On-shell

b-jets

V hadronic

mass

WV SR

Off-shel

W+iets CR

On-shell

b-iets

Top CR

Top CR

VBS $W^{\pm}V \rightarrow lvjj$ - Limitations statistics

Uncertainty source	$\Delta \mu_{\rm EW}$	VBS EW WV sensitivity enhanced with DNN								
Statistical	0.12	models								
Limited sample size	0.10	Limited data and Monte Carlo in tails of DNN								
Normalization of backgrounds	0.08	spectra lead to important uncertainties \rightarrow These uncertainties will scale with the								
Experimental										
b-tagging	0.05	increasing integrated luminosity (e.g. HC Run-III or								
Jet energy scale and resolution	0.04									
Integrated luminosity	0.01	$CMC = 129 \text{t}^{-1}(12 \text{Ta}) \qquad CMC = 129 \text{t}^{-1}(12 \text{Ta})$								
Lepton identification	0.01	$ \begin{array}{c} L = 136 \text{ ib} (13 \text{ lev}) \\ L = 136 \text{ ib} (13 $								
Boosted V boson identification	0.01	V VBF-V, V _Y , VBS-Z(II)V(jj) V VBF-V, V _Y , VBS-Z(II)V(jj) V Nonprompt Top Top								
Total	0.06	10 ⁸ W+Jets VBS-W(h)V(jj) 10 ⁶ W+Jets VBS-W(h)V(jj)								
Theory										
Signal modeling	0.09									
Background modeling	0.08									
Total	0.12									
Total	0.22									
Theory Signal modeling Background modeling Total Total	0.09 0.08 0.12 0.22	billing of the second s								

VBS $W^{\pm}V \rightarrow lvjj$ - Limitations signal uncertainties

Uncertainty source	$\Delta \mu_{\rm EW}$
Statistical	0.12
Limited sample size	0.10
Normalization of backgrounds	0.08
Experimental	
b-tagging	0.05
Jet energy scale and resolution	0.04
Integrated luminosity	0.01
Lepton identification	0.01
Boosted V boson identification	0.01
Total	0.06
Theory	
Signal modeling	0.09
Background modeling	0.08
Total	0.12
Total	0.22

(MadGraph v2.6.5): large dependence on $\mu_{\rm R,F}$

 \rightarrow No improvement with luminosity

LO signal modelling sensitive to process definition: $2 \rightarrow 4 + NWA$ used for public result or inclusive $2 \rightarrow 6$. Large shape and normalization disagreement observed in SRs between the two generations: $2 \rightarrow 6$ cross-section ~15% smaller compatible with the observed signal strength of 0.85 using the $2 \rightarrow 4$ sample

Giacomo Boldrini - CNRS/IN2P3 - LLR, École polytechnique

*endorsed result from CMS-TS-2024-002

Origin of the disagreement: dynamical computation of hard scattering scale differs between 2 \rightarrow 6 and 2 \rightarrow 4, covered by $\mu_{\text{F,R}}$

Fixing the hard scattering scale to a constant value (m $_7 \sim 91$ GeV) removes the energy-growth behaviour but the $\sim 15\%$ normalization disagreement remains suggesting that $\underline{a} \ \underline{2} \rightarrow \underline{6}$ modelling LO@QCD of the signal might be in better agreement with observations.

VBS $W\pm V \rightarrow lvjj$ present an harsh multijet background. Main source from W+jets production

→ W+Jets MC: Madgraph+Pythia8 samples, HT binned up to 4 partons LO@QCD. NLO W+Jets (up to 2 partons at NLO@QCD) brings no improvement (except in $\Delta \eta^{ij}$) + larger stat. uncertainty due to negative weights

→ Data-driven correction to the W+Jets LO sample in both boosted and resolved categories: measure W+jets normalization in bins of p_T^W and subleading VBS jet p_T from a dedicated control region included in the global fit

Trading off systematic uncertainties for a better background description \rightarrow Need for precise background predictions

Each bin has a freely floating normalization parameter

CMS Semileptonic VBS ZV \rightarrow 2l2j

While the VBS WV analysis is published, **CMS is also studying the VBS ZV counterpart with full Run-II luminosity**. A preliminary result with 35.9 fb⁻¹ is public with focus on aQGCs.

VBS-ZV and VBS-WV present a very similar topology and face the same problems regarding background and signal modelling

The VBS-ZV is disadvantaged by the $Z\rightarrow 2l$ branching ratio, leading to a lower S/B ratio

$$Z \rightarrow \boxed{II} \qquad nn \qquad qq$$
$$W \rightarrow \boxed{In} \qquad qq$$

CMS Semileptonic VBS ZV \rightarrow 2l2j

Similar analysis with respect to VBS WV Final

state with 4 jets, 2 charged leptons

- **Resolved regime**: Four R = 0.4 jets resolved in ΔR
- **Boosted regime**: Two R = 0.4 and one R = 0.8 jets for boosted decays of the V-boson

Backgrounds

- Dominant DY+jets production \rightarrow data driven based corrections needed to simulations

- QCD induced diboson and triboson production

- Semileptonic tt and single top \rightarrow normalization floating in top enriched control regions

*endorsed result from <u>A. Hakimi</u>

VERY PRI	ELIMINARY	BOOSTED	RESOLVED	Combined		
	b-veto	0.71	1.12	1.28		
RUN 2	b-tag	0.84	0.84	1.12		
	combined	1.02	1.35	1.8		

VBS ZV \rightarrow 2l2j - Limitations background modelling

CMS Laboratoire Leprince-Ringuet

VBS ZV \rightarrow 2ljj present an harsh multijet background. Main source from Z+jets production

→ **Z+Jets MC:** Madgraph+Pythia8 samples, HT binned up to 4 partons LO@QCD. **Data-driven correction** in bins of p_T^Z and subleading VBS jet p_T from a dedicated control region included in the global fit

Giacomo Boldrini - CNRS/IN2P3 - LLR, École polytechnique

Z+jets resolved bins

VBS ZV \rightarrow 2l2j - Limitations background modelling

CMS Laboratoire Leprince-Ringuet

VBS ZV \rightarrow 2ljj present an harsh multijet background. Main source from Z+jets production

 \rightarrow **Z+Jets MC:** Madgraph+Pythia8 samples, HT binned up to 4 partons LO@QCD. **Data-driven correction** in bins of $p_T^{\ Z}$ and subleading VBS jet p_T from a dedicated control region included in the global fit

Z+jets bins boosted

VBS ZV \rightarrow 2l2j - Limitations background modelling

As for VBS-WV, multiple DNN models in boosted / resolved regions are used to extract the VBS-ZV signal

CMS

→ Measurement dominated by statistical uncertainty,
 DY-correction, background and signal modelling
 (QCDscales DY, QCD-VV, VBF-V).

 \rightarrow Room for improvement with LHC Run III and more accurate theory predictions

Source	Uncertainty					
Statistical	+0.417 -0.410					
Z+jets correction	+0.327 -0.312					
Theoretical	+0.272 -0.243					
Simulation statistics	+0.174 -0.164					
Experimental	+0.199 -0.154					
Total	+0.652 - 0.612					

*endorsed result from A. Hakimi

ATLAS has only one semileptonic public result with limited Run II dataset (35.5 fb⁻¹). Full Run II analysis is ongoing. **Simultaneous measurement of WW/WZ/ZZ VBS where one vector boson decays hadronically**

As CMS analysis, **boosted and resolved regimes** analyzed, **BDT used to extract the signal** in each regime

ATLAS Semileptonic VBS VV Run II

Promising <u>preliminary</u> results toward the analysis of the full Run II dataset from ATLAS <u>CERN-THESIS-2022-165</u>

 \rightarrow Novel RNN methods exploited to extract the signal showing more discriminative power with respect to traditional NN. Attention to susceptibility to modelling uncertainties in the training

(a) significance									(b) signal strength									
		1	e	exped	ted		obse	rved										
	pre-fit po				ost-fit					pre-fit expected					post-fit observed			
	RNN(5j) 3.04 3.03)3	5.65		F	RNN(5j)		1.00 ± 0.36				2.02 ± 0.46					
	RNN	√(4j)	2	.77	2.8	30	4.86		F	RNN(4j)		1.00 ± 0.40				1.94 ± 0.48		
	NN 2		2	.57	2.7	'3	4.2	4.27		NN		1.00 ± 0.42				1.63 ± 0.45		
	RNN(5j)				RNN(4j)				NN Evented Deserved				T					
	Expe		Exper	scied Ob		erveu Expe		cieu	eu Observeu		Expected Observ		iveu					
		1	otal	0.365	-	0.45	b -	0.397	-	0.477	-	0.425	-	0.460	-			
		System	atic	0.313	/3%	0.40	8 80%	0.340	/3%	0.427	80%	0.372	//%	0.411	80%		QCDscales	
		Statis	tical	0.189	27%	0.20.	3 20%	0.204	26%	0.212	20%	0.205	23%	0.206	20%	11	dominant quat	
Theory Uncertainties											uominant syst.							
	Sign	al QCD s	cale	0.128	12%	0.21	3 22%	0.127	10%	0.219	21%	0.130	9%	0.212	21%		uncertainty	
		Signal	PDF	0.019	0%	0.03	8 1%	0.019	0%	0.073	2%	0.019	0%	0.032	0%		· · · · · · · · · · · · · · · · · · ·	
Bad	ckgrour	nd QCD s	cale	0.076	4%	0.09	2 4%	0.093	6%	0.099	4%	0.122	8%	0.122	7%			
	Bac	kground	PDF	0.037	1%	0.04	0 1%	0.050	2%	0.058	1%	0.049	1%	0.047	1%			

Semileptonic processes in the global context

The measurement of polarized vector boson scattering is a long term goal of both ATLAS and CMS collaborations → promising result for HL-LHC. If we want to obtain insights into the EW sector before we need a statistical combination of different VBS channels (Run-II + Run-III). Semileptonic ZV and WV channels act as a link between fully-leptonic (and more pure) channels *endorsed result from CMS-TS-2024-002

The combined measurement of VBS signal strength is a first step toward a combined measurement of polarization fractions \rightarrow Semileptonic VBS can play an important role

Semileptonic processes in the global context

Semileptonic VBS channels lead the sensitivity to **dimension-8 operators / aQGC** + increasing interest in EFT at dimension $6 \rightarrow LO$ predictions might overshoot in high-mass tails, NLO corrections needed for a reliable inference

 \rightarrow Run II results ongoing from CMS

Giacomo Boldrini - CNRS/IN2P3 - LLR, École polytechnique

ZV+2j

C Hbor

CHW

c_{HD} $c_{Hq}^{(1)}$

C HWB c_{HI}⁽¹⁾

 $c_{\scriptstyle qq}^{(1)} \\ c_{\scriptstyle qq}^{(1)} \\ c_{\scriptstyle qq}^{(1,1)} \\ c_{\scriptstyle qq}^{(1,1)}$

Individual constraints

100 fb⁻¹ (13 TeV), Λ = 1 TeV

Linear + Quadratic 95% C.L

95% L+Q (L)

[4.20(4.19), 3.69(3.61)

[2.33(4.42), 2.00(4.32)]

[1.18(1.06) . 1.15(1.27)

[0.76(0.74), 0.86(0.88)

[0.29(0.57), 0.43(0.53) . 0.33(0.42)

[0.28(0.26) . 0.27(0.29)

---- Linear 95% C.L

68% L+Q (L)

[2.15(2.15), 2.01(2.00)]

58(2.26) 1.27(2.23)]

0.51(0.51), 0.69(0.68)

[0.60(0.57).0.59(0.62)]

[0 48(0 49) 0 43(0 43)]

[0.40(0.40) , 0.43(0.43)]

0 20(0 34) 0 32(0 33)1

[0 18(0 29) 0 31(0 27)]

[0 14(0 13) 0 14(0 14)]

Linear + Quadratic 68% C.L

Linear 68% C.I

The **interest in Semileptonic VBS signatures is growing in both ATLAS and CMS** collaborations **thanks to the Run-II integrated luminosity**: the first evidence for VBS WV is a promising first step toward a complete understanding of the VBS process.

However the analyses are complex

- \rightarrow Tiny signal overwhelmed by multijet backgrounds
- \rightarrow Use of advanced Machine Learning techniques to extract the signals
- ightarrow Difficult modelling of the EW signal and large uncertainties limit the sensitivity
- \rightarrow Multijet background hard to model with MC, data driven techniques limit the sensitivity
- \rightarrow Limited statistical power can be cured by analyzing Run III data

Semileptonic VBS signatures play an important role in the global picture

- \rightarrow In global combinations, they act as a link between pure fully leptonic channels
- \rightarrow Vector boson polarization taggers interesting tool for polarized scattering
- \rightarrow Boosted regimes sensitive to BSM physics at dimension-8 or even 6