

Standard-Model Predictions for semi-leptonic VBS and tri-boson

Presented by Daniele Lombardi

Joint COMETA WG1 + WG3 meeting (online) Semi-leptonic decay channels in multi-boson production November 20th, 2024

- Consider process in all final states.
- Study complementary/ overlapping signals.

- Consider process in all final states.
- Study complementary/ overlapping signals.

• Improve accuracy of the perturbative expansion of the cross section.

• Study complementary/ overlapping signals.

Experimental definition: only access to final states.

Daniele Lombardi

Experimental definition: only access to final states.

VBS

Experimental definition: only access to final states.

Tri-boson

Experimental definition: only access to final states. Need to extract signal from background:

- Accurate definition of fiducial region;
- Subtraction of background computed with Monte Carlo simulations.

Experimental definition: only access to final states. Need to extract signal from background:

- Accurate definition of fiducial region;
- Subtraction of background computed with Monte Carlo simulations.

Theory definition: predictions based on perturbation theory. At a given order all possible Feynman diagrams compatible with external states (gauge invariance) must be included.

Example: fully-leptonic VBS at LO

VBS-like topologies

Non-resonant contributions,

Daniele Lombardi

Standard-Model Predictions for semi-leptonic VBS and tri-boson

Experimental definition: only access to final states. Need to extract signal from background:

- Accurate definition of fiducial region;
- Subtraction of background computed with Monte Carlo simulations.

Theory definition: predictions based on perturbation theory. At a given order all possible Feynman diagrams compatible with external states (gauge invariance) must be included.

Example: fully-leptonic VBS at LO

W-5*

w<

 Z/γ

Top-quark background

Standard-Model Predictions for semi-leptonic VBS and tri-boson

Non-resonant

contributions,

tri-boson

processes ...

Experimental definition: only access to final states. Need to extract signal from background:

- Accurate definition of fiducial region;
- Subtraction of background computed with Monte Carlo simulations.

Theory definition: predictions based on perturbation theory. At a given order all possible Feynman diagrams compatible with external states (gauge invariance) must be included.

Example: fully-leptonic VBS at LO

VBS-like topologies

Non-resonant contributions, tri-boson processes ...

QCD-mediated processes

Daniele Lombardi

Standard-Model Predictions for semi-leptonic VBS and tri-boson

Semi-leptonic VBS

Experimental issues:

- larger cross section;
- × higher number of background sources.

proper way of reconstructing hadronically decaying vector boson.

Semi-leptonic VBS

Experimental issues:

- larger cross section;
- × higher number of background sources.

proper way of reconstructing hadronically decaying vector boson.

Theory issues: severe computational challenges.

Fully-leptonic VBS

- ✓ NLO QCD corrections both to LO_{EW} and QCD background known and available in VBFNLO, POWHEG-BOX, Sherpa, MG5_aMC@NLO ...
 - Often in VBS approximation (neglecting interferences and/or s-channels).
 - With approximate treatment of decays (e.g narrow-width approximation).
- ✓ NLO EW corrections to LO_{EW} for W[±]W[±], W[±]Z, ZZ and W⁺W[−] in a full off-shell calculation with MoCaNLO.
- ✓ Full set of NLO corrections for W[±]W[±] and ZZ in a full off-shell calculation with MoCaNLO.

□ No NNLO results

Fully-leptonic VBS

✓ NLO QCD corrections both to LO_{EW} and QCD background known and available in VBFNLO, POWHEG-BOX, Sherpa, MG5_aMC@NLO ...

- Often in VBS approximation (neglecting interferences and/or s-channels).
- With approximate treatment of decays (e.g narrow-width approximation).

✓ NLO EW corrections to LO_{EW} for W[±]W[±], W[±]Z, ZZ and W⁺W[−] in a full off-shell calculation with MoCaNLO.

✓ Full set of NLO corrections for W[±]W[±] and ZZ in a full off-shell calculation with MoCaNLO.

 \Box No NNLO results

Fully-leptonic VBS

✓ NLO QCD corrections both to LO_{EW} and QCD background known and available in VBFNLO, POWHEG-BOX, Sherpa, MG5_aMC@NLO ...

- Often in VBS approximation (neglecting interferences and/or s-channels).
- With approximate treatment of decays (e.g narrow-width approximation).

MLO EW corrections to LO_{EW} for $W^{\pm}W^{\pm}$,

 $W^{\pm}Z$, ZZ and $W^{+}W^{-}$ in a full off-shell

calculation with MoCaNLO.

✓ Full set of NLO corrections for W[±]W[±] and ZZ in a full off-shell calculation with MoCaNLO.

 \Box No NNLO results

Fully-leptonic VBS

✓ NLO QCD corrections both to LO_{EW} and QCD background known and available in VBFNLO, POWHEG-BOX, Sherpa, MG5_aMC@NLO ...

- Often in VBS approximation (neglecting interferences and/or s-channels).
- With approximate treatment of decays (e.g narrow-width approximation).
- ✓ NLO EW corrections to LO_{EW} for W[±]W[±], W[±]Z, ZZ and W⁺W[−] in a full off-shell calculation with MoCaNLO.
- ✓ Full set of NLO corrections for W[±]W[±] and ZZ in a full off-shell calculation with MoCaNLO.
- □ No NNLO results

Semi-leptonic VBS

- ✓ Results available only at LO:
- · Ballestrero et all . [arXiv:0812.5084]
- · Denner et all . [arXiv:2406.12301]
- □ No NLO results

Fully-leptonic VBS

✓ NLO QCD corrections both to LO_{EW} and QCD background known and available in VBFNLO, POWHEG-BOX, Sherpa, MG5_aMC@NLO ...

- Often in VBS approximation (neglecting interferences and/or s-channels).
- With approximate treatment of decays (e.g narrow-width approximation).
- ✓ NLO EW corrections to LO_{EW} for W[±]W[±], W[±]Z, ZZ and W⁺W[−] in a full off-shell calculation with MoCaNLO.
- ✓ Full set of NLO corrections for W[±]W[±] and ZZ in a full off-shell calculation with MoCaNLO.
- □ No NNLO results

Semi-leptonic VBS

- ✓ Results available only at LO:
- · Ballestrero et all . [arXiv:0812.5084]
- · Denner et all . [arXiv:2406.12301]
- □ No NLO results

Denner, Lombardi, Schwan [arXiv:2406.12301]

Calculation

- * Full off-shell calculation performed with the in-house MoCaNLO program.
- * Light-quark- and photon-induced contributions included, but bottom channels neglected.
- * Importance of resonance contributions assessed with DPA for $\mathcal{O}(\alpha^6)$.

Denner, Lombardi, Schwan [arXiv:2406.12301]

Calculation

 $\alpha_{\rm s}^2 \alpha^4$ $\alpha_{\rm s} \alpha^5$ $lpha^6$ $\alpha_{\rm S}^3 \alpha$ $\alpha_{\rm S}^4 \alpha$ QCD QCD **EW** QCD FW EW EW QCD FEW QCD $\left(\alpha_{\rm s}^3 \alpha^4 \right)$ $\left(\alpha_{\rm S}^5 \alpha^2\right)$ $\alpha_{\rm s}^2 \alpha^5$ $\alpha_{\rm s} \alpha^6$ $\left(\alpha_{
m S}^4 \alpha^3 \right)$

- * Full off-shell calculation performed with the in-house MoCaNLO program.
- Light-quark- and photon-induced contributions included, but bottom channels neglected.
- * Importance of resonance contributions assessed with DPA for $\mathcal{O}(\alpha^6)$.

Fiducial region inspired by CMS analysis [arXiv:2112.05259]

- Two jet definitions:
 - AK4 jets: R = 0.4 with $p_{T, j_{AK4}} > 30 \,\text{GeV}$, $|y_{j_{AK4}}| < 4.7$;
 - AK8 jets: R = 0.8 with $p_{T, j_{AK8}} > 200 \,\text{GeV}$, $|y_{j_{AK8}}| < 2.4$, and $40 \,\text{GeV} < M_{j_{AK8}} < 250 \,\text{GeV}$; with $\Delta R(j_{AK4}, j_{AK8}) > 0.8$.
- Two categories:
 - Resolved: zero AK8 jets and at least four AK4 jets;
 - Boosted: one AK8 jet and at least two AK4 jets.

Denner, Lombardi, Schwan [arXiv:2406.12301]

Calculation

- * Full off-shell calculation performed with the in-house MoCaNLO program.
- Light-quark- and photon-induced contributions included, but bottom channels neglected.
- * Importance of resonance contributions assessed with DPA for $\mathcal{O}(\alpha^6)$.

Fiducial region inspired by CMS analysis [arXiv:2112.05259]

- Two jet definitions:
 - AK4 jets: R = 0.4 with $p_{T, j_{AK4}} > 30 \,\text{GeV}$, $|y_{j_{AK4}}| < 4.7$;
 - AK8 jets: R = 0.8 with $p_{T, j_{AK8}} > 200 \,\text{GeV}$, $|y_{j_{AK8}}| < 2.4$, and $40 \,\text{GeV} < M_{j_{AK8}} < 250 \,\text{GeV}$; with $\Delta R(j_{AK4}, j_{AK8}) > 0.8$.
- Two categories:
 - Resolved: zero AK8 jets and at least four AK4 jets;
 - Boosted: one AK8 jet and at least two AK4 jets.
- * Tag jets j_1 and j_2 : two AK4 jets with highest invariant mass and such that $|\Delta y_{j_1,j_2}| > 2.5$, $M_{j_1j_2} > 500 \text{ GeV}$ and leading tag jet $p_{T,j_1} > 50 \text{ GeV}$.

Denner, Lombardi, Schwan [arXiv:2406.12301]

Calculation

- * Full off-shell calculation performed with the in-house MoCaNLO program.
- Light-quark- and photon-induced contributions included, but bottom channels neglected.
- * Importance of resonance contributions assessed with DPA for $\mathcal{O}(\alpha^6)$.

Fiducial region inspired by CMS analysis [arXiv:2112.05259]

- Two jet definitions:
 - AK4 jets: R = 0.4 with $p_{T, j_{AK4}} > 30 \,\text{GeV}$, $|y_{j_{AK4}}| < 4.7$;
 - AK8 jets: R = 0.8 with $p_{T, j_{AK8}} > 200 \,\text{GeV}$, $|y_{j_{AK8}}| < 2.4$, and $40 \,\text{GeV} < M_{j_{AK8}} < 250 \,\text{GeV}$; with $\Delta R(j_{AK4}, j_{AK8}) > 0.8$.
- Two categories:
 - Resolved: zero AK8 jets and at least four AK4 jets;
 - Boosted: one AK8 jet and at least two AK4 jets.
- * Tag jets j_1 and j_2 : two AK4 jets with highest invariant mass and such that $|\Delta y_{j_1,j_2}| > 2.5$, $M_{j_1j_2} > 500 \text{ GeV}$ and leading tag jet $p_{T,j_1} > 50 \text{ GeV}$.

* Jet(s) from hadronically decaying W boson $j_V\!\!:$

- Resolved: the two non-tag AK4 jets with invariant mass the closest to $85 \text{ GeV} \rightarrow 65 \text{ GeV} < M_{j_V} < 105 \text{ GeV}$
- Boosted: the AK8 jet $\rightarrow 70 \,\mathrm{GeV} < M_{j_V} < 115 \,\mathrm{GeV}$

November 20th, 2024 23

Denner, Lombardi, Schwan [arXiv:2406.12301]

	resolved-setup		boosted-setup	
Order	$\sigma_{ m off\ shell}[{ m fb}]$	Δ [%]	$\sigma_{ m off\ shell}[{ m fb}]$	Δ [%]
${\cal O}(lpha^6)$	$9.042(1)^{+9.0\%}_{-7.7\%}$	22.8	$2.5070(4)^{+11.6\%}_{-9.6\%}$	21.0
${\cal O}(lpha_{ m s}lpha^5)$	$0.2952(1)^{+17.2\%}_{-13.5\%}$	0.7	$0.06920(5)^{+19.3\%}_{-14.9\%}$	0.6
${\cal O}(lpha_{ m s}^2lpha^4)$	$30.334(5)^{+36.7\%}_{-24.7\%}$	76.5	$9.338(3)^{+39.1\%}_{-25.9\%}$	78.4
sum	$39.673(5)^{+30.2\%}_{-20.8\%}$	100.0	$11.914(3)^{+33.2\%}_{-22.4\%}$	100.0

Integrated cross sections

Small ratio of LO_{EW} (embedding signal) over QCD background in both categories (between 21-23%).

Denner, Lombardi, Schwan [arXiv:2406.12301]

	resolved-s	etup	boosted-setup	
Order	$\sigma_{ m off\ shell}[{ m fb}]$	$\Delta[\%]$	$\sigma_{ m off\ shell}[{ m fb}]$	$\Delta[\%]$
${\cal O}(lpha^6)$	$9.042(1)^{+9.0\%}_{-7.7\%}$	22.8	$2.5070(4)^{+11.6\%}_{-9.6\%}$	21.0
${\cal O}(lpha_{ m s}lpha^5)$	$0.2952(1)^{+17.2\%}_{-13.5\%}$	0.7	$0.06920(5)^{+19.3\%}_{-14.9\%}$	0.6
${\cal O}(lpha_{ m s}^2lpha^4)$	$30.334(5)^{+36.7\%}_{-24.7\%}$	76.5	$9.338(3)^{+39.1\%}_{-25.9\%}$	78.4
sum	$39.673(5)^{+30.2\%}_{-20.8\%}$	100.0	$11.914(3)^{+33.2\%}_{-22.4\%}$	100.0

Integrated cross sections

Fixedorder

accuracy

All final states

Quality of DPA at $\mathcal{O}(\alpha^6)$

Most of the physics captured by DPA for observables inclusive over decay products of resonances.

DPA fails in off-shell regions:

- overestimate of +5/15% below W peak;
- underestimate up to -20% above Z peak.

Standard-Model Predictions for semi-leptonic VBS and tri-boson

Semi-leptonic VBS: moving to NLO?

Even if all ingredients in principle available, still a formidable task ...

Number of partonic channels to be evaluated explodes.

Semi-leptonic VBS: moving to NLO?

Even if all ingredients in principle available, still a formidable task ...

Number of partonic channels to be evaluated explodes.

Approximate result using DPA? Due to non-trivial resonance structure of semi-leptonic VBS process, DPA computation becomes extremely difficult already at $\mathcal{O}(\alpha^6)$.

Semi-leptonic DPAs with $1 \rightarrow 2$ decay

$$\begin{split} pp &\to W^+(\ell^+\nu_\ell)W^+(jj)jj, \\ pp &\to W^+(\ell^+\nu_\ell)Z(jj)jj, \\ pp &\to W^+(\ell^+\nu_\ell)W^-(jj)jj, \end{split}$$

Fully hadronic DPAs with $l \rightarrow 2$ decay $pp \rightarrow \ell^+ \nu_\ell W^-(jj)W^+(jj),$ $pp \rightarrow \ell^+ \nu_\ell W^-(jj)Z(jj),$ $pp \rightarrow \ell^+ \nu_\ell W^-(jj)W^-(jj).$

$\mathbf{p}\mathbf{p}$	$\rightarrow \iota$	ν_{ℓ} vv	(JJ) vv	(J
pp	$\rightarrow \ell^{-}$	$^+ u_\ell { m Z}({ m j})$	j)Z(jj),	

Semi-leptonic DPAs with $I \rightarrow 4$ decay

•	
$pp \to W^+(\ell^+ \nu_\ell) H(jjjj),$	$pp \to W^+(\ell^+ \nu_\ell) Z(jjjj),$
$\mathrm{pp} \to \mathrm{W}^+(\ell^+ \nu_\ell) \mathrm{W}^-(\mathrm{jjjj}),$	
${ m pp} ightarrow { m W}^+(\ell^+ u_\ell { m jj}) { m Z}({ m jj}),$	
$\mathrm{pp} \to \mathrm{W}^+(\ell^+ \nu_\ell \mathrm{jj})\mathrm{W}^-(\mathrm{jj}),$	
$\mathrm{pp} \to \mathrm{H}(\ell^+ \nu_\ell \mathrm{jj}) \mathrm{W}^+(\mathrm{jj}),$	$pp \rightarrow Z(\ell^+ \nu_\ell jj)W^+(jj),$
$\mathrm{pp} \to \mathrm{H}(\ell^+ \nu_\ell \mathrm{jj})\mathrm{Z}(\mathrm{jj}),$	$\mathrm{pp} \to \mathrm{Z}(\ell^+ \nu_\ell \mathrm{jj})\mathrm{Z}(\mathrm{jj}),$
$\mathrm{pp} \to \mathrm{H}(\ell^+ \nu_\ell \mathrm{jj}) \mathrm{W}^-(\mathrm{jj}),$	$pp \rightarrow Z(\ell^+ \nu_\ell jj) W^-(jj),$

Fully hadronic DPAs with nested $1 \rightarrow 2$ decay

```
\begin{split} pp &\to \ell^+ \nu_{\ell} H(W^+(jj)jj), \qquad pp \to \ell^+ \nu_{\ell} Z(W^+(jj)jj), \\ pp &\to \ell^+ \nu_{\ell} H(Z(jj)jj), \\ pp &\to \ell^+ \nu_{\ell} H(W^-(jj)jj), \qquad pp \to \ell^+ \nu_{\ell} Z(W^-(jj)jj). \end{split}
```

Semi-leptonic DPAs with nested $1 \rightarrow 4$ decay

$$\begin{split} pp &\to H(W^+(\ell^+\nu_\ell)jj)jj, \qquad pp \to Z(W^+(\ell^+\nu_\ell)jj)jj, \\ pp &\to H(\ell^+\nu_\ell W^-(jj))jj, \qquad pp \to Z(\ell^+\nu_\ell W^-(jj))jj, \end{split}$$

- Nested contributions.
- Subtraction of overcounting of triply-resonant contributions.

Fixedorder

All final states

Complementary signals: tri-boson production

Fully-leptonic tri-boson production

- Rare (but clean) signature with small cross section.
- Simple structure of QCD corrections.

✓ NLO QCD corrections known and available in VBFNLO, Sherpa, ...

☑ NLO EW corrections also computed and available in Madgraph, ...

Tri-boson production with a hadronically decaying boson

• Larger cross section, but also numerous background sources.

• WZ + jj production: all LO contributions + NLO corrections at

• $W^{\pm}W^{\pm}$ + jj production: full set of LO and NLO contributions.

 $\mathcal{O}(\alpha^7)$ and $\mathcal{O}(\alpha_8 \alpha^6)$. Denner et all [arXiv:2407.21558]

• Overlap with fully-leptonic VBS, but different definition of fiducial volume.

✓ Only two results available with LO and NLO corrections obtained with full off-shell

Daniele Lombardi

Denner et all. [arXiv:2406.11516]

calculations.

Tri-boson production: WZ+jj

Denner, Lombardi, Lopez, Pelliccioli [arXiv:2407.21558]

Integrated cross sections

All final states

Tri-boson Phase space

- Exactly two tag jets satisfying: $p_{T, j_{1/2}} > 40 \,\text{GeV}, \quad |y_{j_{1/2}}| < 3 \rightarrow \text{VETO} \text{ on}$ additional radiation
- Invariant-mass cut on tag jets: $50 \text{ GeV} < M_{j_1 j_2} < 100 \text{ GeV}$

Differential results at NLO

– NLO QCD + EW	$= \mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^7) + \mathcal{O}(\alpha_s \alpha^6)$
NLO EW	$= \mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^7)$
NLO QCD	$= \mathcal{O}(\alpha^6) + \mathcal{O}(\alpha_s \alpha^6)$

Non-trivial interplay between EW and QCD corrections:

- Dominance of negative EW corrections as compared to the positive QCD ones where the bulk of the cross section resides;
- Negative corrections in the tail.

Standard-Model Predictions for semi-leptonic VBS and tri-boson

Tri-boson production: $W^{\pm}W^{\pm}+jj$

Denner, Pellen, Schönherr, Schumann [arXiv:2406.11516]

Integrated cross sections

Smaller **EW** corrections compared to VBS.

Off-shell effects

At **differential level**, large differences between off-shell and on-shell results:

- Enhancement at $M_{j_1j_2} \sim M_W$.
- Suppression for $M_{\rm H} M_{\rm W} < M_{j_1 j_2} < M_{\rm W}.$
 - Missing contributions with additional W- or Higgs boson off-shell.
 - Additional QCD radiation from hadronically decaying W boson not included.

All final states

Tri-boson Phase space

Arbitrary number of jets satisfying: p_{T,j} > 20 GeV, |y_j| < 4.5
Two leading jets:

Parton-shower matching for VBS and tri-boson

Fully-leptonic case

✓ NLO QCD corrections: matched to QCD Parton shower (PS) both for VBS and tri-boson production (fully-leptonic final states) and available in public tools like POWHEG-BOX, Sherpa, MG5_aMC@NLO ...

- \cdot QCD-production mode for VBS.
- EW-production mode for VBS obtained within VBS approximation, where s-channels and t/u-channel interference neglected.

matching ambiguity

Fixedorder accuracy

All final states

Parton-shower matching for VBS and tri-boson

Fully-leptonic case

✓ NLO QCD corrections: matched to QCD Parton shower (PS) both for VBS and tri-boson production (fully-leptonic final states) and available in public tools like POWHEG-BOX, Sherpa, MG5_aMC@NLO ...

- \cdot QCD-production mode for VBS.
- EW-production mode for VBS obtained within VBS approximation, where s-channels and t/u-channel interference neglected.

■ NLO EW corrections: $\mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^7)$ for W[±]W[±] VBS matched to QED PS and interfaced to QCD PS in POWHEG-BOX-RES. Chiesa et all. [arXiv:1906.01863]

Semi-leptonic case

Only one result for $W^{\pm}W^{\pm}+$ jj tri-boson production (complexity of fully-leptonic VBS): NLO QCD corrections matched to QCD and QED PS with approximate inclusion of NLO EW corrections at $\mathcal{O}(\alpha^7)$ in Sherpa. Denner et all. [arXiv:2406.[1516]]

Fixedorder accuracy

All final states

Matching of NLO EW corrections

Chiesa, Denner, Lang, Pellen [arXiv:1906.01863]

Off-shell NLO EW corrections to fully-leptonic $W^{\pm}W^{\pm}$ VBS matched to QED and interfaced to QCD PYTHIA Parton shower.

Fixedorder accuracu

All final states

POWHEG method used for the NLO matching, with PS starting scale set to $\sqrt{p_{\mathrm{T}j_1}p_{\mathrm{T}j_2}}$ instead of photon $p_{\mathrm{T}\gamma\,\mathrm{pow}}$ (scalup).

- Avoid unphysical suppression of QCD radiation.
- Veto QED radiation with $p_{T\gamma} > p_{T\gamma pow}$ to prevent double counting.

Redistribution of events from high to low transverse momentum due to additional QCD/QED radiation from the PS.

 \rightarrow consistent with observed behaviour for $\mathcal{O}(\alpha_{\rm S}\alpha^6)$ correction.

NLO QCD matching with approximate QED/EW effects

Denner, Pellen, Schönherr, Schumann [arXiv:2406.11516]

Off-shell corrections to tri-boson production in the $W^{\pm}W^{\pm}$ jj channel matched to Sherpa Parton shower with MC@NLO.

QCD production mode

- QCD corrections at O(α_S³α⁴) matched to QCD PS.
 QED effects from final-state leptons via YFS softphoton resummation.
- EW corrections not included.
 - Redistribution of events to lower $M_{j_1j_2}$.
 - Missing EW effects of $\mathcal{O}(\alpha_{\rm S}^2 \alpha^5)$ terms (especially around W mass).

Fixedorder accuracy

All final states

NLO QCD matching with approximate QED/EW effects

Denner, Pellen, Schönherr, Schumann [arXiv:2406.11516]

Off-shell corrections to tri-boson production in the $W^{\pm}W^{\pm}$ jj channel matched to Sherpa Parton shower with MC@NLO.

- ♦ $\mathcal{O}(\alpha^6)$ split into incoherent sum of s- and u/t-channel contributions \rightarrow QCD PS matching well-defined.
- QED effects from final-state leptons via YFS softphoton resummation.
- EW corrections included with EW_{virt} approximation (photon-induced channels excluded).
 - Redistribution of events to lower $M_{j_1j_2}$.
 - Negative EW corrections predicted for M_{j1j2} > M_W.

Accessing polarisation states in VBS

Measuring polarisation states of Vector Bosons can provide additional information on spontaneous EW Symmetry Breaking / Unitarity Restoration at high energies.

Experimental definition:

Only access to final states, not directly to resonances. Polarisation states extracted with:

- Machine-learning techniques;
- Polarised-template method.

Theory definition:

Non-trivial definition of cross section for two polarised vector bosons:

- Selection of doubly-resonant diagrams
 - \rightarrow DPA to preserve gauge invariance.
- Definition of polarised signal via helicity projectors.

T = transverse polarised L = longitudinal polarised

Separation of doubly-resonant contribution from singly-/non-resonant background:

$$\mathcal{M}_{\text{full}} \to \mathcal{M}_{\text{PA}}$$

Separation of the four polarised signals ($\lambda \in \{LL, LT, TL, TT\}$) from interference contributions:

$$|\mathcal{M}_{PA}|^{2} = \sum_{\lambda} |\mathcal{M}_{PA}^{\lambda}|^{2} + \sum_{\lambda \neq \lambda'} \mathcal{M}_{PA}^{\lambda,*} \mathcal{M}_{PA}^{\lambda'}$$
Polarised signal Interference

Daniele Lombardi

Polarised fully-leptonic $W^{\pm}W^{\pm}VBS$ at NLO Denner, Haitz, Pelliccioli [arXiv:2409.03620]

- Results for polarised di-boson production known at NLO QCD and EW, also including matching with PS.
- Results for polarised fully-leptonic VBS only at LO and available in public codes like PHANTOM, Sherpa, MG5_aMC@NLO ...
- ✓ First result for polarised fully-leptonic W[±]W[±]VBS at NLO QCD + EW.

	$\mathcal{O}(\alpha^6)$	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{\rm S}\alpha^6)$
state	$\sigma_{ m LO}~[{ m fb}]$	$\delta_{ m EW}$	$\delta_{ m QCD}$
full	$1.4863(1)^{+9.2\%}_{-7.8\%}$	-0.140	-0.047
PA	$1.46455(9)^{+9.2\%}_{-7.8\%}$	-0.142	-0.050
LL	$0.14879(1)^{+8.3\%}_{-7.2\%}$	-0.101	-0.044
LT	$0.23209(2)^{+9.1\%}_{-7.8\%}$	-0.131	-0.042
TL	$0.23208(2)^{+9.1\%}_{-7.8\%}$	-0.131	-0.042
TT	$0.87702(7)^{+9.4\%}_{-8.0\%}$	-0.154	-0.054
int.	$-0.0254(1)^{-8.9\%}_{+10.6\%}$	-0.139	-0.007

$$|\mathcal{M}_{\rm PA}|^2 = \sum |\mathcal{M}_{\rm PA}^{\lambda}|^2 + \sum \mathcal{M}_{\rm PA}^{\lambda,*} \mathcal{M}_{\rm PA}^{\lambda'}$$

2

 $\lambda \neq \lambda'$

Paving way to polarised

semi-leptonic VBS.

Results for polarised di-boson production known at NLO QCD and EW, also $\mathbf{\underline{N}}$ including matching with PS.

- Results for polarised fully-leptonic VBS only at LO and available in public codes like PHANTOM, Sherpa, MG5_aMC@NLO ...
- \checkmark First result for polarised fully-leptonic $W^{\pm}W^{\pm}VBS$ at NLO QCD + EW.

 $\mathcal{O}(\alpha^7)$

 $\mathcal{O}(\alpha^6)$

state	$\sigma_{ m LO}~[{ m fb}]$	$\delta_{ m EW}$	$\delta_{ m QCD}$		
full	$1.4863(1)^{+9.2\%}_{-7.8\%}$	-0.140	-0.047	$\int \frac{(\sigma_{\text{full}} - \sigma_{\text{PA}})}{\sim 1.5\%}$	Non-doubly resonant
PA	$1.46455(9)^{+9.2\%}_{-7.8\%}$	-0.142	-0.050	$\int \sigma_{\rm PA}$	background
LL	$0.14879(1)^{+8.3\%}_{-7.2\%}$	-0.101	-0.044		
LT	$0.23209(2)^{+9.1\%}_{-7.8\%}$	-0.131	-0.042	$ 1 ^2 - \nabla 1 \rangle$	1^2 $\sqrt{\sum (\lambda, *)}$
TL	$0.23208(2)^{+9.1\%}_{-7.8\%}$	-0.131	-0.042	$ \mathcal{M}_{PA} - \sum_{i} \mathcal{M}_{PA} $	$T = \sum_{A} \mathcal{M}_{PA} \mathcal{M}_{PA}$
TT	$0.87702(7)^{+9.4\%}_{-8.0\%}$	-0.154	-0.054	λ	$\lambda \neq \lambda'$
int.	$-0.0254(1)^{-8.9\%}_{+10.6\%}$	-0.139	-0.007		Interference \sim
int.	$-0.0254(1)^{+0.070}_{+10.6\%}$	-0.139	-0.007		

 $\mathcal{O}(\alpha_{\rm S} \alpha^6)$

 $\sim -1.7\%$

Fixed-order accuracy

All final states

Parton-shower matchin

Paving way to polarised

semi-leptonic VBS.

- Results for polarised di-boson production known at NLO QCD and EW, also including matching with PS.
- ☑ Results for polarised fully-leptonic VBS only at LO and available in public codes like PHANTOM, Sherpa, MG5_aMC@NLO ...
- First result for polarised fully-leptonic W[±]W[±]VBS at _____ Paving way to polarised semi-leptonic VBS.
 NLO QCD + EW.

 $\mathcal{O}(\alpha^7)$

Polarised fully-leptonic $W^{\pm}W^{\pm}VBS$ at NLO

Denner, Haitz, Pelliccioli [arXiv:2409.03620]

 $\mathcal{O}(\alpha^6)$

 $\mathcal{O}(\alpha_{\rm S}\alpha^6)$

- Dominance of TT contribution ~ 60% \cdot $\sigma_{\rm PA}$.
- $\delta_{\rm EW}$ different in size among polarisation contributions (e.g $(\delta_{\rm EW}^{\rm TT} \delta_{\rm EW}^{\rm LL})/\delta_{\rm EW}^{\rm TT} \sim 3\%$).
- $\delta_{\rm QCD}$ small and mostly polarisation independent.

Daniele Lombardi

November 20th, 2024 39

Polarised signal All final states Fixedorder accuracy Partonshower matching

Polarised fully-leptonic $W^{\pm}W^{\pm}VBS$ at NLO Denner, Haitz, Pelliccioli [arXiv:2409.03620]

Study suitable observables for polarisation extraction:

- The least model dependent;
- With the highest discrimination power.

Differential behaviour

- Shape differences among polarised signals:
 - Leptons tend to align to direction of T-polarised W.
 - Leptons preferably orthogonal to direction of L-polarised W.

 $p_{\mathrm{T}\ell_1} > 25\,\mathrm{GeV}$

 $R_{21}^{(l)}$

E.g

Daniele Lombardi

Standard-Model Predictions for semi-leptonic VBS and tri-boson

40

Polarised fully-leptonic $W^{\pm}W^{\pm}VBS$ at NLO Denner, Haitz, Pelliccioli [arXiv:2409.03620]

Study suitable observables for polarisation extraction:

- The least model dependent;
- With the highest discrimination power.

Differential behaviour

- Shape differences among polarised signals:
 - Leptons tend to align to direction of T-polarised W.
 - Leptons preferably orthogonal to direction of L-polarised W.
- Size of NLO corrections for $R_{21}^{(\ell)} < 0.2$:
 - Largest $\delta_{\rm EW}$ for TT signal.
 - Sizeable and negative $\delta_{\rm QCD}$ for LL signal.

 $p_{\mathrm{T}\ell_1} > 25\,\mathrm{GeV}$

E.g

 $R_{21}^{(\ell)} = rac{p_{{
m T},\ell_2}}{p_{{
m T},\ell_1}}$

Fixedorder accuracy

All final states

Daniele Lombardi

Standard-Model Predictions for semi-leptonic VBS and tri-boson

Lepton cuts

 $p_{\mathrm{T}\ell_{2}} > 20\,\mathrm{GeV}$

WORK IN PROGRESS Conclusions

Experimental results for VBS and tri-boson productions in a non-fully-leptonic final state will become available ... but from the theory side there is still a lot to do!

□ No results beyond LO is available for VBS in the semi-leptonic final state.

- Already for the <u>fully-leptonic</u> final state, the inclusion of EW corrections when matching to a QCD and a QED **parton shower** deserves further investigation + no PS-matched results for <u>semi-leptonic</u> VBS.
- Polarised signals have just been started to be explored, at the moment only in the fully-leptonic final state.

Fixedorder accurac

All final states

WORK IN PROGRESS Conclusions

Experimental results for VBS and tri-boson productions in a non-fully-leptonic final state will become available ... but from the theory side there is still a lot to do!

□ No results beyond LO is available for VBS in the semi-leptonic final state.

- Already for the <u>fully-leptonic</u> final state, the inclusion of EW corrections when matching to a QCD and a QED **parton shower** deserves further investigation + no PS-matched results for <u>semi-leptonic</u> VBS.
- Polarised signals have just been started to be explored, at the moment only in the fully-leptonic final state.

Thank you for your attention

-Fixed order accurac

All final states