Searches for resonances in diboson final states

Andrea Malara Université Libre de Bruxelles

Cometa: WG1+WG3

Introduction

- Predicted by several Beyond the Standard Model (BSM) theory models
 - Additional (heavy) Higgs bosons
 - Additional (pseudo) scalar/vector bosons
- Predicted with various properties:
 - Spin-0, Spin-1, Spin-2, pseudo-scalar, ...
 - \blacktriangleright High masses: m(X) ~ TeV
 - Off-shell production: ALPs
- Rich variety of final states to analyse
 - ► All-hadronic
 - Lepton(s)+jets
 - Multi-leptons

LHCP 2024

Introduction

- Predicted by several Beyond the Standard Model (BSM) theory models
 - Additional (heavy) Higgs bosons
 - Additional (pseudo) scalar/vector bosons
- Predicted with various properties:
 - Spin-0, Spin-1, Spin-2, pseudo-scalar, ...
 - \blacktriangleright High masses: m(X) ~ TeV
 - Off-shell production: ALPs

Rich variety of final states to analyse ► All-hadronic This talk Lepton(s)+jets Multi-leptons

LHCP 2024

Overview of CMS results

Andrea Malara

HY resonances

H(bb)Y(bb)

 \blacktriangleright H($\gamma\gamma$)Y(bb)

 $\blacktriangleright H(\tau\tau) \Upsilon(bb)$

Z(II) V(qq) \blacktriangleright Z(vv) V(qq) \blacktriangleright W(lv) V(qq)

LHCP 2024

Overview of CMS results

Andrea Malara

More public results <u>here</u>

05 June 2024

 \vdash H(ττ) Υ (bb)

Experimental techniques

- Boosted vs resolved topology
- Defined by the resonance's mass
- Collimated decay products reconstructed as multi-prong objects
- Less combinatoric, but overlapping
- Usage of jet flavour and sub-structure:
 - pillars for BSM searches

Search for localised excesses:

- Tails of SM processes
- Simple 1-D fit of m(X), NN score, ...
- > 2-D/3-D fit when M(V/H) known

05 June 2024

Analysis in a nutshell

- Reconstruction
- > 2 leptons (e/μ)
- \blacktriangleright 1 large radius jet (W, Z, H)
- or 2 small radius jets

JHEP 04 (2022) 087

LHCP 2024

Z

- Analysis in a nutshell
 - Reconstruction
 - > 2 leptons (e/μ)
 - \blacktriangleright 1 large radius jet (W, Z, H)
 - or 2 small radius jets
 - Strategy
 - Categorisation:
 - Lepton flavour, Boosted/resolved
 - bb/0b (based on subjet b-tagging)
 - > V boson tagging with n-subjettines (τ_{21})
 - \blacktriangleright 1D fit of m(ZV)
 - DY + jet as primary background
 - Subdominant contribution from diboson

JHEP 04 (2022) 087

Results

Upper limits on ALPs coupling

Andrea Malara

LHCP 2024

Results

- Upper limits on ALPs coupling
- \blacktriangleright Upper limits on $X \rightarrow VV$
 - ► Spin 1 and spin-2

Analysis in a nutshell

- Reconstruction
 - ▶ 0 lepton (e/μ) + missing transverse energy $(\nu\nu)$
 - \blacktriangleright 1 large radius jet (W, Z, H)
 - Two additional forward jets in the VBF category

PRD 106 (2022) 012004

Analysis in a nutshell

- Reconstruction
 - \triangleright 0 lepton (e/μ) + missing transverse energy ($\nu\nu$)
 - \blacktriangleright 1 large radius jet (W, Z, H)
 - Two additional forward jets in the VBF category

Strategy

- Categorisation:
- ◎ ggF/VBF, bb/0b
- Purity based on n-subjettines (τ_{21})
- \blacktriangleright 1D fit of $m_T(ZV)$
 - V + jet non-resonant background estimated from CR with transfer factors
 - Resonant backgrounds ($t\bar{t}$, VV) from simulation

PRD 106 (2022) 012004

LHCP 2024

Results

- \blacktriangleright Upper limits on $X \rightarrow VV$
- Spin 0/1/2
- DY/ggF, VBF categories

Search for WV -- single-lepton channel

Analysis in a nutshell

- Reconstruction
 - > 1 lepton (e/μ) + missing transverse energy (ν)
 - \blacktriangleright 1 large radius jet (W, Z, H)
 - Two additional forward jets in the VBF category

PRD 105 (2022) 032008

Search for WV -- single-lepton channel

Analysis in a nutshell

- Reconstruction
 - > 1 lepton (e/μ) + missing transverse energy (ν)
 - \blacktriangleright 1 large radius jet (W, Z, H)
 - Two additional forward jets in the VBF category
- Strategy
- Categorisation:
- Lepton flavour, ggF/VBF, bb/0b
- Purity based on decorrelated n-subjettines (τ_{21}^{DDT})
- Spin (rapidity separation)
- > 2D fit of m(WV) vs m(j)
 - W + jet non-resonant in each dimension
 - Other backgrounds resonant in m(j)

0.15

0.1

0.05

40

Events / 100 GeV 10^{3} 10^{2}

10

Data/fit

Search for WV -- single-lepton channel

Results

- Upper limits on $X \rightarrow VV$
- Spin 0/1/2
- DY/ggF, VBF categories

Search for diboson -- interpretations

Comparing channels

- Model-dependent limits:
 - Production modes (ggF/DY, VBF)
 - Theory parameters (spin, charge, coupling)

LHCP 2024

Search for diboson -- interpretations

Comparing channels

- Model-dependent limits:
 - Production modes (ggF/DY, VBF)
 - Theory parameters (spin, charge, coupling)

LHCP 2024

Search for diboson -- interpretations

Comparing channels

- Model-dependent limits:
 - Production modes (ggF/DY, VBF)
 - Theory parameters (spin, charge, coupling)

Submitted to Physics Reports

CMS

138 fb⁻¹ (13 TeV) 3

Summary and Outlook

- Presented searches for diboson resonance
- > 0/1/2 leptons final states
- Spin 0/1/2 hypoteses
- ggF/DY/VBF productions
- Several interpretations provided
- Stay tune for more results:
- Legacy Run2 combination
- new Run3 data to provide further insight

Thank you for your attention!

