ETH zürich

FASERCal: High Energy Neutrino Measurements at FASER

8th Forward Physics Facility Meeting 21st January 2025

Lottie Cavanagh on behalf of FASERCal group

ETH Zurich: <u>C. Cavanagh</u>, T. Dieminger, A. Gendotti, U. Kose, B. Li, S. Monsalve, A. Rubbia, D. Sgalaberna, S. Thor, T. Weber, J. Wu, J. Wuthrich, X. Zhao University of Geneva: A. Sfyrla University of Bern: A. Ariga

Physics Motivation

- A higher beam rate will be challenging for existing FASER_v detector
- A finely-segmented detector is required, capable of exploiting the large numbers of neutrinos expected in Run 4 and HL-LHC era

Current FASERv emulsion/tungsten box:

- Opportunity to place a detector in addition to FASER that can provide important data for current and future high-energy neutrino telescope projects
 - Study neutrino energy spectra for simulation and background studies
 - Will allow the study of QCD at low-x
 - Giving insight into intrinsic charm measurements

Physics Motivation Continued

- Goal: A detector capable of detecting v_e CC, v_μ CC interactions and identifying the tau lepton
 - v_{e} and v_{μ} cross section measurements at TeV energy v_{r}^{e} CC interaction studies ongoing
 - 0
- FASERCal will act as a target for neutrino interactions, functioning as a calorimeter for energy measurements
 - Both CC and NC interactions will be targeted
- Shower containment and energy reconstruction for neutrino interactions deep within the detector
 - Reconstruction of v_{x} critical for studying neutrino energy spectrum in combination with neutrino flux Ο

Expected neutrino interactions in FASERv: (1 tonne detector, on beam axis line of sight)

	Luminosity	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$
Run 3	$250 { m fb^{-1}}$	1700	8500	30
Run 4	$680 { m ~fb^{-1}}$	4900	25000	90

• FASER v 24: $v_{\mu} + \bar{v}_{\mu}$ + FASER 24: v_{μ} A FASER 24: $v_{\mu} + \bar{v}_{\mu}$ • FASER v 24: $v_e + \bar{v}_e$ = FASER 24: \bar{v}_{μ}

See also Felix Kling's talk: Collider Neutrinos: Opportunities and Perspectives

Evolution of design concept

- FASERCal will provide simultaneous 3D tracking of particles in addition to precise and accurate reconstruction of particle trajectories
- Based on the **SuperFGD** detector operating at T2K
 - Modules consisting of tungsten plates and layers of optically isolated plastic scintillator cubes
 - Readout by WLS fibres and SiPM
 - Allows sub-nanosecond tracking and calorimetry
 - Allows very fine granularity

SuperFGD: <u>A fully active fine grain detector (2018)</u> JINST <u>3D SuperFGD detector at T2K (2022)</u> NIMA

Proof of concept: <u>Demonstrating a 3D segmented plastic</u> scintillator detector (2021) *JINST*

SuperFGD: Neutrino interaction event display

CERN Seminar: Super-FGD at T2K

FASERCal detector: conceptual design

3DCAL

- Scintillator voxels + high precision tracker
- 15 modules making up the main target
- Highly granular (1 cm³) 3D tracking
- Precise and accurate reconstruction of particle trajectories

RearCAL

- Electromagnetic calorimeter
- Measurement and identification of EM showers

μTag

- Muon ID for v_{μ} CC interactions
- Reduce background and provide clean signal
- Plastic scintillator

FASERCal detector: conceptual design

3DCAL

- Scintillator voxels + high precision tracker
- 15 modules making up the main target
- Highly granular (1 cm³) 3D tracking
- Precise and accurate reconstruction of particle trajectories

RearCAL

- Electromagnetic calorimeter
- Measurement and identification of EM showers

μTag

- Muon ID for v_{μ} CC interactions
- Reduce background and provide clean signal
- Plastic scintillator

3DCal modules

Single module:

- 15 modules made up of scintillator voxels and pixel detector
 - 1 cm³ granularity 3D voxels
 - \circ 6 x 10⁷ pixels per tracker layer

Sindle Inc	Julie.	
	Finely segmented scintillator	Precise pixel air (*) Precise pixel(**)
•		$\longrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow$
	200 mm 0.40X₀	0.2mm 0.2mm 4mm

Scintillator voxels

- Optically isolated 1 cm³ cubes, readout fibres arranged in three planes to collect light from multiple cubes
- 3D voxel reconstruction implemented from 2D views
- One end of each WLS fibre read out by SiPM (silicon photomultiplier)

Two options for production:

Glued cubes

Ο

Ο

Ο

Ο

Well understood procedure

Demonstrating a single-block 3D-segmented plastic-scintillator detector

3D printed cubes R&D ongoing with <u>3Det collaboration</u> hosted by CERN <u>Additive manufacturing of a 3D-segmented plastic scintillator detector</u> (2023) <u>Beam test results of a fully 3D-printed plastic scintillator particle detector</u> prototype (2024)

3DCal modules

- 15 modules made up of scintillator voxels and pixel detector
 - 1 cm³ granularity 3D voxels
 - \circ 6 x 10⁷ pixels per tracker layer

• Air gap and material not finalised

High precision pixel-based tracker

- Pixel detector
- Two layers for reconstruction of track segments
- Combine with 3D voxel reconstruction to complete 3D track reconstruction

FASERCal event display

- Simulated v_{e} CC and v_{μ} CC interactions in the FASERCal detector
 - \circ Electromagnetic["] shower component shown in blue
 - Hadronic component shown in red

FASERCal event display: 3D voxel reconstruction

- Full FASERCal simulation implemented in Geant4
- Implementation of full 3D reconstruction of neutrino interaction constructed from 2D views
- Developing new deep learning tools for removal of ghosts

2D projection:

Reconstructed tracks + vertices

The possibility of reconstructing the energy flow in 3D opens the door to measure exclusive final states and exploit the transverse kinematical variables with the possibility of using these features to identify charm and tau events.

Summary

- FASERCal plans to provide fine granularity and full energy flow reconstruction in 3D for future neutrino analyses
 - Potential measurements of exclusive final states and exclusive cross section analysis
 - Exploitation of transverse kinematical variables with the possibility to identify charm and tau events
- 3D voxel reconstruction
 - Preliminary physics studies underway including energy reconstruction and missing transverse momentum studies
 - Work in progress: studies exploring deep learning tools
 - Geometry optimisation in progress
- Prototyping for FASERCal is ongoing
 - Proof of concept demonstrated
 - Many R&D opportunities already being explored

Backup Slides

FASER and FASERv

Predictions from 10 ab⁻¹ GENIE MC in current FASERCal geometry :

Interactions	FASERCal	FASERCal w/ no lead target
$v_e^+ \overline{v}_e^- CC$	39575	22023
ν_{μ} + $\overline{\nu}_{\mu}$ CC	196646	107470
$v_{\tau}^{+} \overline{v}_{\tau}^{-} CC$	1050	583
v NC	78551	45055
ES	326	182
Total	316148	175313

3D Voxel Reconstruction: ongoing studies

Lottie Cavanagh - 8th Forward Physics Facility Meeting - 21th January 2025

Machine Learning reconstruction study

	True ghost	True electromagnetic	True hadronic
ed. ghost	183,710,669	49,885,184	15,051,598
ed. electromagnetic	46,576,946	298,401,577	19,913,688
ed. hadronic	5,932,741	12,501,237	52,332,336

- Voxel tagging using machine learning
 - Training, validation and testing on 100k events
 - Good purity and efficiency
 - Performance improved further close to the primary vertex
- Flavour identification using deep learning
 - Achieved using RearCAL information
 - Overall accuracy (purity) of 87%

Lottie Cavanagh - 8th Forward Physics Facility Meeting - 21th January 2025

Location of FASERCal prototype

Two potential locations studied for the placement of a FASERCal prototype

Lottie Cavanagh - 8th Forward Physics Facility Meeting - 21th January 2025

v_{e} and v_{u} measurements in FASER electronic detector

Existing results:

First direct observation of collider neutrinos with FASER
 <u>August 2023</u>

 First measurement of muon neutrino interaction cross section and flux as a function of energy with FASER
 <u>December 2024</u>

v_{e} and v_{μ} measurements in FASER electronic detector

Planned analysis:

• v_{p} measurement with FASER's electromagnetic calorimeter

max timing charge ≤ 20 pC, calorimeter region