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• FASER and FASERν have proved the ability to discover and measure TeV 
neutrinos from the LHC


• FASER has been approved for Run 4


- an upgraded detector will collect 680 fb-1, and quite possibly up to 3 ab-1 
if run through the end of HL-LHC


• Emulsion is expensive, cannot envision having emulsion in place for all 680 
fb-1 of Run 4


• If we replace FASERν for all or most of Run 4, we should replace it with 
something that continues/enhances the neutrino program


• We have 1 or 2 boxes of tungsten that can be reused. Each box is ~1 
tonne, consisting of 730 1 mm x 25 cm x 30 cm plates


• UCI group is pursuing a US NSF Major Research Infrastructure program


- ~$20 set aside to fund construction projects up to $4M over 5 years 
(2025-30)


- Each major University may submit 1 proposal, and we have been 
selected as UCI’s proposal this year 

Background: FASER Run 4 Upgrade

Upgrade

Leading PIs at UCI: 
Jonathan Feng 
Jianming Bian 
David Casper 
Michael Smy
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FORTVNE
• Tungsten/Scintillator bars


• 99 cm x 25 cm x 60 cm


- 2 FASERν stacked up, with emulsion 
replaced by scintillator bars


• 66 repeating modules, each is


- 5 mm tungsten (1.5 X0)


- 5 mm horizontal scint. bars (YZ view)


- 5 mm vertical scint. bars (XZ view)


- For each scint. bar: 0.5 cm x 1 cm


• Total mass: 0.954 tonnes


• Extended coverage upwards: η > 7.6 
(FASERν: η > 8.5, FASER: η > 9.2)


• No CE required, no disruption to FASER 
spectrometer, re-uses 660 tungsten plates 
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Neutrino Physics
• Segmentation is too coarse 

for ντ physics. Would have 
preferred SciFi, 0.2 mm-
diameter fibers. However, it 
would exceed $4M budget. It 
would be good to re-visit this 
if other funding comes 
through


• Still there is significant 
physics case from both νe 
and νμ neutrinos at TeV 
energies, and possibly some 
BSM searches (thanks to 
Felix, Max, Roshan, Toni)
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Proton Structure and Astroparticle Physics
• FORTVNE extends to η > 7.6, overlaps SND’s “off-axis” coverage


• Electron neutrino energy spectrum normalization and shape shed light on proton 
structure (intrinsic charm, low-x gluon pdf), astroparticle physics (cosmic muon 
puzzle), oscillations to sterile neutrinos or other states
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Detector Design Consideration
• Primary goal is νe CC measurement: reasonable 

longitudinal granularity of the scintillating bars is 
necessary to capture electron shower development. 
Tungsten thickness should be 1-2X0 at most. Tungsten 
X0 = 3.5 mm


• Sufficient tungsten to ensure statistics: 1 tonnes


• Minimize modifications due to the budget cap 


- limit the detector length to 1 meter, reuse existing 25 
cm x 30 cm tungsten plates, stack up to increase 
total mass


• 5 mm thickness of tungsten (~1.5 X0) for electron 
identification


- Further thinning would require more scintillator 
channels, which is not feasible with budget constraint


• Use SiPM readout without cooling

5 mm 5 mm 5 mm
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Scintillator bars
Baby-MIND style scintillator bar and SiPM system, proposed for FLArE HadCal

• BC408: a general-purpose plastic scintillator widely used high-energy physics experiments


• Geometry: 0.5 cm x 1 cm x 25 cm (60 cm) for horizontal (vertical) 


• Each scintillator bar has two SIPMs coupled to it, one at each end, to enable photon detection in both low-
energy and high-energy ranges


• Wrapped with a 100-200 µm Tyvek reflector to improve light collection. The reflector will also limit optical 
crosstalk between scintillator bars


• Two options for coupling with the SiPM: embedding a WLS fiber in a groove and directing the fiber end with 
the SiPM, or directly attach the SiPM to the end of the scintillator bars

For illustration
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Photosensors - SiPM

BabyMIND

Scintillator bar + SiPM

• Hamamatsu MPPC 13360-3025CS/PE SiPMs


- 14,400 pixels within a 3 mm x 3 mm active area, PDE 40% at 450 nm


• Fiber connectors are glued to the ends of the bars to align the fiber ends with the SiPMs

• Each SiPM will be mounted on a mini PCB board to facilitate connections to the electronics via coaxial cables


• Two SiPMs for each scintillator bar, one with a neutral density optical filter to reduce light yield for high-energy 
measurements, and the other without a filter for low-energy measurements


- High dynamic range: from MIP tracks to high-energy-density EM showers
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Readout Electronics

Baby MIND electronics readout, developed by UniGe
https://doi.org/10.7566/JPSCP.27.011011

CITIROC (Cherenkov Imaging Telescope Integrated Readout Chip) used in the Baby-MIND detector of the WAGASCI 
experiment and the SuperFGD detector of the T2K experiment, 32 channels, 3 chips per FEB 
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Light Yield

Light yield (PE) of 1 scintillator 
bar measured with cosmic rays in 
room temperature – BabyMIND 
PoS(PhotoDet2015)031

• The detector simulation involves first simulating energy deposits in the scintillators and then the digitized response 
in the SiPMs to these deposits

• In the simulation, the light yield of a single scintillator bar is set to 30 p.e./MIP, and the dark noise is set to 2 p.e. 
per channel, based on BabyMIND results. 


• Other effects considered include detector cell non-uniformity, light attenuation, SiPM saturation, readout 
electronics non-linearity, and background noise.
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Simulation: Event Displays, Y-Z view
νe CC, E = 493 GeV

νe CC: High energy density EM shower NC: Lower energy density pi0/hadron showers

NC, E = 557 GeV

νμ CC, E = 579 GeV

νμ CC: Long muon track + hadron showers

ντ CC, E = 865 GeV
ντ CC, τ->hadrons: high energy hadron 
shower
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Simulation: Event Displays, Y-Z view

Each type of event exhibits clear topological signatures that can be 
distinguished from the others
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νe Identification with CNN
• Train a CNN PID for νe CC Identification


• With the event composition of νμ : νe : ντ = 
131:24:1


- νe CC Eff: 86%, Pur: 83%


- νμ CC Eff: 99%, Pur: 72%


- ντ CC Eff: 8%, Pur: 48%


νe  CC can be identified with good 
efficiency and purity 

• The relatively high impurity in νμ CC and 
low efficiency in ντ CC could be improved 
by combining FASER’s spectrometer and 
calorimeter

FOM: S/ S + B
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νe CC Calorimetric Energy Resolution

• Reconstructing Calorimetric Energy by adding up deposit energies in scintillator bars, no shower/track clustering


• Shift the peak of (RecoE−TrueE)/TrueE to 1. The RMS of the (RecoE−TrueE)/TrueE distribution is defined as the 
energy resolution, ~20%


• The long tail in the (RecoE−TrueE)/TrueE distribution is caused by the detector containment and the invisible 
energy of hadronic interactions in νe CC events.
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Summary
• Tungsten target/scintillator bars combination is a well-established technology, with it FORTVNE can:


- Identify νe CC from NC and other backgrounds


- Measure νe energy with a resolution of approximately ~20%


• Due to smaller absorber thickness, the containment of νμ  and ντ  events is reduced, requiring the track 
spectrometer for muon momentum reconstruction


• Single electron identification is understudy


• Due to reduced hadron/muon containment, ντ identification is challenging. Using CNN pattern 
recognition to identify ντ hadronic decay mode may have a chance


• Physics cases: neutrino properties at TeV energies, QCD, proton structure, astroparticle connections


• Potential upgrades in the future


- Add SciFi between tungsten plates in FORTVNE to improve vertex resolution for ντ

- Replace the current Magnetized decay pipe with hadronic calorimeter/Muon Spectrometer after 
FORTVNE to improve hadron containment and muon momentum measurement

Thank you!



Backup Materials
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FORTVNE
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Supporting Structure
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Search for New Particles
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Cost Estimate
Scintillator + sipm system
Number of x+y modules 66
Channels per module (x + y) 85

cost in $
Scintillator material cost per channel 50 quote from luxium
Scintillator machining per channel 140 2 hours of machine shop @ 70/hour
Scintillator assembly per channel 45 3 hours of UG labor @ 15/hour
SiPM cost per channel 200 quote from Hamamatsu
Readout electronics cost per channel 100 BabyMIND readout

Scintillator + sipm system cost 3001350

Tungsten absorber cost in USD
Tungsten 0 from current FASERnu
Tungsten supporting structure 35000 50 hours of machine shop @ $70/hour

Personnel (26% overhead) cost/year cost in USD
Technician 100000 500000 100k/year for 5 years, engineer design, prototyping, overlook production
Postdoc 80000 240000 80k/year for 3 years, simulation, Qa/Qc, analysis, detector assembly and commissioning
PhD students 70000 210000 70k/year for 3 years, supervise UGs for scintllator production

Total cost 3986350
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Construction/Management Plan
• Simulation and Detector parameter optimization


• Engineering design


• Scintillator bar and SiPM procurement


• Scintillator bar machining, UCI Physical Sciences Machine Shop @ $70/hours


• Scintillator bar + SiPM assembly @ UCI High Bay


• Readout electronics construction/procurement


• QA/QC


• Prototyping


• Beam test


• Detector assembly and commissioning


