

Large-scale Integrated Circuits with 2D MoS₂ for Neuromorphic Computing

Prof. Andras Kis

22.11.24.

École Polytechnique Fédérale de Lausanne

EPFL Science and Engineering with 2D Semiconductors

- "Classical" semiconductor devices
- Mobility, current density, high-frequency performance
- Memory devices, neural networks

New concepts

- Valley/spin optics and electronics
- Excitonic devices and circuits

Material growth

- MOCVD and CVD growth of TMDCs and heterostructures
- MBE growth of TMDCs and heterostructures

EPFL IT Energy Problem

http://www.phys.ncku.edu.tw/~htsu/hum or/fry_egg.html

Cavin et al. J Nanopart Res (2006)

System level:

Intel Core i7 8700K processor (2017) 10⁹× worse! (2.5 GFLOPS/W) Frontier supercomputer (ORNL, 2022) 4·10⁷× worse (62.68 GFLOPS/W) A100 40 GB (NVIDIA, 2023) 3.7·10⁷× worse (78 GFLOPS/W)

John von Neumann

3

Andras Kis

EPFL Graphite and Graphene

EPFL Graphite and Graphene

Graphite and Graphene

2010 Physics Nobel Prize (Andre Geim, Konstantin Novoselov)

2D Transition Metal Dichalcogenides (TMDCs)

EPFL Tip of the lceberg

>500 potentially interesting 2D materials

Transition metal trichalcogenides

AMo,X., NbX., TiX., and TaX. (X = S, Se, or Te)

Metal phosphorous trichalcogenides

Metal phosphorous trichalcogenides (MPX₃), such as MnPS₄, CdPS₄, NiPS₄, ZnPS₄, and Mn₂₃Fe_{4,1}PS₃

Transition metal
 Chalcogen
 Phosphorus

MnPS,top view

MnPS, side view

222222

Transition metal dihalides

Transition metal oxides

 $\begin{array}{l} \label{eq:transition} \begin{array}{l} \mbox{Transition} \mbox{ metal oxides : Ti} \ \mbox{oxides, Ti}_{0.01}O_2, \\ \mbox{Ti}_{0.02}O_2, \ \mbox{Ti}_3O_3, \ \mbox{Ti}_4O_5, \\ \mbox{Ti}_5O_{12}, \ \mbox{Hb}_5O_{12}, \\ \mbox{Hb}_5O_{12}, \ \mbox{Hb}_5O_{23}, \\ \mbox{Ti}_5O_2, \ \mbox{Na}_4(Mn^{4+},Mn^{3+})_2O_4 \end{array}$

Nicolosi...Coleman; Science (2013)

Molybdenite on quartz, Moly Hill mine, La Motte, Québec, Canada Source: Wikipedia

EPFL Scotch Tape Exfoliation

Benameur...Kis, Nanotechnology (2011)

EPFL Our First Contribution: Monolayer MoS₂ Transistor

INTRODUCTION

Andras Kis 11

EPFL 2D Device Breakthroughs

Andras Kis **13**

Lopez Sanchez...Kis; Nat. Nanotech. (2013)

EPFL MoS₂ Photodetectors: Responsivity

Lopez-Sanchez, Nature Nanotechnology (2013)

EPFL MoS₂ Photodetectors: Noise

- Si diodes
 Photoresponsivity:
 NEP:
- MoS₂
 Photoresponsivity:
 NEP:

880 A/W

 $1 \times 10^{-14} \text{ W/Hz}^{1/2}$

0.5 A/W

- 1.8 × 10⁻¹⁵ W/Hz^{1/2}
- Equivalent min. photon flux for the MoS_2 photodetector: 1×10^{-17} lux
- Full moon:0.1-0.3 luxStarlight, no airglow, no moon:0.0001 lux

Lopez-Sanchez, Nature Nanotechnology (2013)

Photocurrent Dynamics

Lopez-Sanchez, Nature Nanotechnology (2013)

Furchi et al. Nano Lett. (2014)

Andras Kis

17

INTRODUCTION

EPFL Integrated Photodetectors

EPFL MoS₂ Photodetector Benchmarking

Technology	Material	Band Gap (eV)	Responsivity (A/W)	NEP (W/√Hz)
Silicon PIN Photodiode	Si	1.12	0.5-0.7	10^-14 - 10^-15
InGaAs PIN Photodiode	In _{0.53} Ga _{0.47} As	0.75	0.8-1.0	10^-14 - 10^-15
Germanium Photodiode	Ge	0.67	0.5-0.7	10^-13 - 10^-14
Silicon APD	Si	1.12	50-130	10^-15 - 10^-16
MoS ₂	MoS ₂	1.8	880	10^-15
PMT (Photomultiplier Tube)	Various	N/A	10^5 - 10^7 A/W	10^-17 - 10^-18
Quantum Dot	PbS or PbSe	0.37 or 0.27	0.3-0.5	10^-12 - 10^-13
Graphene	Graphene	0	0.1-0.5	10^-12 - 10^-13
MCT (Mercury Cadmium Telluride)	Hg _{1-x} Cd _x Te	0.1-1.5	2-20	10^-11 - 10^-12

Compiled using perplexity.ai

EPFL Today: 1024 Transistors on a Chip

Marega...Kis, Nature Electronics (2023)

Metalorganic chemical

vapour deposition

Cun, Kis, Radenovic et al. (2019)

Large single crystals EPFL, Kim...Kis, Nano Lett (2017)

 $\mu\approx 50\; cm^2 V^{-1} s^{-1}$

EPFL IRDS – International Roadmap for Devices and Systems

Figure ES48

Change in the MOSFET device architecture from the 2D planar through 2.5D FinFets to 3D monolithic VLSI with GAA

https://irds.ieee.org/editions/2021/executive-summary

EPFL IRDS – International Roadmap for Devices and Systems

YEAR OF PRODUCTION	2021	2022	2025	2028	2031	2034
	G51M30	G48M24	G45M20	G42M16	G40M16/T2	G38M16/T4
Logic industry "Node Range" Labeling (nm)	"5"	"3"	"2.1"	"1.5"	"1.0 eq"	"0.7 eq"
IDM-Foundry node labeling	17-15	15-13	13-12.1	12.1-f1.5	11.5e-f1.0e	11.0e-f0.7e
Logic device structure options	FINFET	finFET LGAA	LGAA	LGAA	LGAA-3D	LGAA-3D
Platform device for logic	finFET	finFET	LGAA	LGAA	LGAA-3D	LGAA-3D
Frequency scaling - node-to-node	•	0.02	0.16	0.09	-0.08	-0.01
CPU frequency at constant power density (GHz)	3.13	2.83	3.53	2.50	1.48	0.86
Power at iso frequency - node-to-node		-0.16	-0.27	-0.05	-0.06	-0.08
Power density - relative	1.00	1.12	1.04	1.59	2.51	4.27
LOGIC TECHNOLOGY ANCHORS						
Patterning technology inflection for Mx interconnect	1931, EUV DP	1931, EUV DP	1931, EUV DP	193i, High-NA EUV	193i, High-NA EUV	193i, High-NA EUV
Beyond-CMOS as complimentary to platform CMOS	-	•	-	2D Device,	2D Device, EAFET	2D Device, FREET
Channel material technology inflection	SiGe25%	SiGe50%	SiGe50%	Ge, 2D Mat	Ge, 2D Mat	Ge, 2D Mat
Process technology inflection	Conformal Doping, Contact	Channel, RMG	Lateral/AtomicE tch	Non-Cu Mx	3DVLSI	3DVLSI
Stacking generation inflection	2D	3D-stacking: W2W, D2W Mem-on-Logic	3D-stacking: W2W, D2W Mem-on-Logic	3D-stacking, Fine-pitch stacking, P-over- N, Mem-on- Logic	3D-stacking, 3DVLSI: Mem-on-Logic with Interconnect	3D-stacking, 3DVLSI: Logic-on-Logi

Figure ES9

Devices will continue to aggressively scale in the next 5 years

https://irds.ieee.org/editions/2021/executive-summary

EPFL 2D Materials in the Industry

TSMC heads below 1nm with 2D transistors at IEDM Technology News, | October 18, 2022 By Nick Flaherty

https://www.eenewseurope.com/en/tsmc-heads-below-1nm-with-2d-transistors-at-iedm/

[INTEL, IEEE TED (2021), doi:10.1109/TED.2021.3118659]

First Demonstration of GAA Monolayer-MoS₂ Nanosheet nFET with 410 µA/µm I_D at 1V V_D at 40nm gate length

Fig. 19. Process flow and schematic of single 2D NS device without sheet release.

nanosheet device with gate stack fully wrapped around the

channel. Corresponding EDX elemental mapping (d)-(g).

V_{GS}(V) V_{OS}(V) Fig. 2L. (a) I₀-V_{G0} and (b) I₀-V₀₀ device charactenistics of monolayer MoS₁ NSFET with Lg=40nm.

Monolaver

80-15 0.0 1.8 50

6001

556

200

0.0 0.5 1.0

1 300

õ

V... = 1 to 4V

Step = 0.5V

[TSMC, IEDM (2022), doi:10.1109/IEDM45625.2022.10019563]

Process integration and future outlook of 2D transistors

Revice & O'Brain, Carilli Naylor, Chalana Dorone, Kilon Masare, Adabit Ventras Prostantalish. Anahor V yonalahi, Tang Jihong, Anda Katanana, Badanit Jian, Carly Rugan, Wasale Mandalaman, Malana Jian, Kilon, Badali Sarahatah, Pul-pula Regularia, Sinara Data, Tarlari Tomo, Scott Clandonman, Fuel Recher, Ermens B. Parte, Malka Badowalawa, Matt Mark Kiloga And

[INTEL, Nature Comm. (2023), DOI: 10.1038/s41467-023-41779-5]

EPFL IT Energy Problem

http://www.phys.ncku.edu.tw/~htsu/hum or/fry_egg.html

Cavin et al. J Nanopart Res (2006)

System level:

Single device:

Intel Core i7 8700K processor (2017) 10⁹× worse! (2.5 GFLOPS/W) Frontier supercomputer (ORNL, 2022) 4·10⁷× worse (62.68 GFLOPS/W) A100 40 GB (NVIDIA, 2023) 3.7·10⁷× worse (78 GFLOPS/W)

John von Neumann

25

Andras Kis

EPFL Logic in Memory

Sebastian...Eleftheriou, Nat. Nanotech. (2020)

Andras Kis

EPFL Logic in Memory

Sebastian...Eleftheriou, Nat. Nanotech. (2020)

Performance metrics	DRAM	Flash	РСМ	STT-MRAM	RRAM	HDD
Feature size (nm)	36	22	45	95	9	NA
Cell Area	6F ²	4F ²	4F ²	4F ²	4F ²	~256*
Write/Erase Time	< 10ns	1/0.1ms	100ns	<10ms	<1ns	5ms
Retention	64ms	>10y	>10y	>10y	>10y	>10y
Endurance	>1E16	1E4	1E9	>1E12	1E12	>1E16
Nonvolatility	Ν	Y	Y	Y	Y	Y
Multi-level capability	Ν	Y	Y	Ν	Y	-
Write Energy (J/bit)	4E-15	> 2E-16	1E-12	2.5E-12	1E-13	-
Standby Power (W/Gb)	1E-1	1E-3	1E-3	1E-3	1E-3	110

Credit: G. M. Marega

EPFL Vector Matrix Multiplication

Ielmini and Wong, Nat. Electron. (2018)

Marega...Kis, Nature Electronics, 2023.

Flash Memory with MoS₂ EPFL

Marega...Kis; Nature (2020)

LOGIC IN MEMORY

31 Andras Kis

EPFL Memory Effect

EPFL 2D Logic in Memory

2-state retention >10 years Endurance: 60,000 program/erase cycles

Marega...Kis; Nature (2020)

Programmable Inverter

 $X^{(Q)}$

0

0

0

IN

1

Logic input and memory states

0

0

0

Q

1

2 3 $X^{(Q)}$

0

1

OUT

0

Memory states and logic

output

Marega...Kis; Nature (2020)

EPFL Neural Networks with MoS₂

IN-MEMORY COMPUTING

EPFL Digit Classification

Simulations: 38× energy advantage over CMOS - Giuseppe Iannaccone (U. of Pisa)

Marega...Kis; ACS Nano (2022)

EPFL Large-scale Integration

32×32 FGFET array 1024 devices 83% yield

IN-MEMORY COMPUTING

EPFL Large-scale Integration

32×32 FGFET array 1024 devices 83% yield

Device Failure Modes

Open-loop Programming EPFL

IN-MEMORY COMPUTING

V_{PULSE} (V)

Andras Kis

EPFL Open-loop Programming

Marega...Kis, Nature Electronics (2023)

IN-MEMORY COMPUTING

EPFL In-Memory Signal Processing

Signal Filtering by Convolution

Low-Pass Filter

(Average)

1 5

1

h

Signal Input

Marega...Kis; Nature Electronics (2023)

44

EPFL Summary

- MoS₂ photodetectors
 - Lopez-Sanchez...Kis, Nature Nanotechnology (2013) doi: 10.1038/nnano.2013.100
 - Gonzalez Marin...Kis, npj 2D Mat. (2019) doi: 10.1038/s41699-019-0096-4
- Logic-in-memory based on an atomically thin semiconductor
 - Marega...Kis, Nature 587, 72 (2020) doi:10.1038/s41586-020-2861-0
- Artificial neural networks based on MoS₂
 - Marega...Kis, ACS Nano 16, 3684 (2022) doi:10.1021/acsnano.1c07065
- Large-scale integration and in-memory data processing
 - Marega...Kis, Nature Electronics (2023) doi:10.1038/s41928-023-01064-1

ector-matrix multiplication ith monolayer memories

EPFL Acknowledgements

Kis group

Dr. Arindam Bala Eloi Collette Riccardo Chiesa Cristian de Giorgio Edoardo Lopriore Asmund Ottesen Dr. Feng Shun Fedele Tagarelli

Former members

Dr. Guilherme Migliato Marega Dr. Gabriele Pasquale Zhenyu Wang

Collaborations

Prof. Giuseppe Iannaccone Prof. Gianluca Fiori Prof. Gino Giusi Prof. Aleksandra Radenovic

European

Commission

Horizon 2020 European Union funding for Research & Innovation

