WG: Communicating The Importance of Particle Physics

Emanuela Musumeci, Hanae Tilquin, **Abdelhamid Haddad** and Jan-Hendrik Arling

CERN, 14 Nov. 2024

Contributors

Thank you to everyone who joined our WG meetings and shared their time and input

- Armin Ilg (exp. Physics, FCC, University of Zürich)
- Emanuela Musumeci (Pheno/exp., Future colliders+MoEDAL, IFIC, Valencia)
- Abdelhamid Haddad (ATLAS experiment, exotics, LPCA)
- Hanae Tilquin (LHCb, Imperial College London)
- Laura Huhta (University of Jyvaskyla)
- Fan Henry (ATLAS, Glasgow)
- Alexis Maloizel (FCC/ATLAS, APC)
- Jan Klamka (University of Warsaw)
- Francesco P. Ucci (Pheno/Th, INFN Pavia, University of Pavia)
- Louis Portales (CEA Paris-Saclay / IRFU, CMS/FCC)
- Hopefully more, Maybe you ?!

We welcome all of you to join the effort 🙂

Disclaimer

• **Everything is open for discussion:** The WG name, scope, topics raised, and proposals presented so far are all subject to further review and re-discussion.

• We had to prioritize certain topics, but additional ideas and material have been set aside for later consideration. (Backup)

• The goal is to provide a clear summary of what we've discussed in previous meetings and, hopefully, inspire you to collaborate with us moving forward, or at least to trigger further discussion.

Motivations

- ECRs are expected to excel in various areas, from math and theory to instrumentation, computer science, and communication—yet, we often lack formal training in these skills.
- **Communication skills are highly valued** in our field, **not just technical abilities**. Clear communication enables collaboration, sharing of technical perspectives, and visibility.
- **Effective communication**, both internal and external, is **crucial** for raising awareness about our work and future plans across experiments and collaborations.

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

Simplifying Complex Concepts: ECRs may struggle to distill advanced scientific ideas into simpler, accessible language.

Engaging Interest: It can be difficult to make physics feel relevant and exciting to students who may not yet see its real-world impact.

Maintaining Attention: The vast range of topics in physics can overwhelm students, making it hard to keep them engaged.

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

Simplifying Complex Concepts Engaging Interest Maintaining Attention

Undergraduate students

- Inspire questioning and exploration of new scientific ideas.
- Make science exciting by connecting it to broader challenges.
- Offer guidance and hands-on project experience.
- Show how physics leads to diverse roles and contributions.

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

Simplifying Complex Concepts Engaging Interest Maintaining Attention

Undergraduate students

- Inspire questioning and exploration of new scientific ideas.
- Make science exciting by connecting it to broader challenges.
- Offer guidance and hands-on project experience.
- Show how physics leads to diverse roles and contributions.

Guidance and Support: ECRs often lack experience in mentoring undergraduates, which can hinder their ability to provide clear, structured advice.

Balancing Mentorship and Personal Research: ECRs may struggle with dividing time between their own work and the need to mentor undergraduates effectively.

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

Simplifying Complex Concepts Engaging Interest Maintaining Attention

Undergraduate students

- Inspire questioning and exploration of new scientific ideas.
- Make science exciting by connecting it to broader challenges.
- Offer guidance and hands-on project experience.
- Show how physics leads to diverse roles and contributions.

Guidance and Support Balancing Mentorship and Personal Research

Outreach

Recognition: Outreach efforts often aren't formally recognized in academia assessments or career advancements. It might be seen as less critical than publishing papers or presenting at conferences.

Time and support: It can be time-consuming, and there may not be sufficient institutional support for outreach efforts.

Lack of Mentorship in Outreach: ECRs may not have sufficient guidance on how to effectively communicate their science to the public, especially to younger audiences, making it harder to navigate and engage in outreach.

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

Undergraduate students

- Inspire questioning and exploration of new scientific ideas.
- Make science exciting by connecting it to broader challenges.
- Offer guidance and hands-on project experience.
- Show how physics leads to diverse roles and contributions.

Other ECRs

- Boost networking, knowledge-sharing, and growth among ECRs.
- Encourage informal communication for idea exchange and guidance.
- Remind that physics is challenging, but collaboration makes it doable.
- Help ECRs see the impact of their work in the broader scientific context.

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

Undergraduate students

- Inspire questioning and exploration of new scientific ideas.
- Make science exciting by connecting it to broader challenges.
- Offer guidance and hands-on project experience.
- Show how physics leads to diverse roles and contributions.

Other ECRs

- Boost networking, knowledge-sharing, and growth among ECRs.
- Encourage informal communication for idea exchange and guidance.
- Remind that physics is challenging, but collaboration makes it doable.
- Help ECRs see the impact of their work in the broader scientific context.

Balancing life and work: Heavy workloads can prevent ECRs from finding time for informal discussions, making it harder to engage in productive communication.

Isolation: Without sufficient networking or informal communication opportunities, ECRs may feel isolated, lacking the space for casual, open exchanges of ideas.

Seniors

- Promote open communication across all hierarchical levels.
- Support ECRs by providing guidance and maintaining feedback channels.
- Facilitate knowledge transfer to foster collaboration and career growth.
- Align scientific goals and resources through clear communication.

12

Seniors

- Promote open communication across all hierarchical levels.
- Support ECRs by providing guidance and maintaining feedback channels.
- Facilitate knowledge transfer to foster collaboration and career growth.
- Align scientific goals and resources through clear communication.

Building Peer Networks: Difficulties establishing strong, supportive networks with peers in other institutions or fields, limiting their access to new ideas and future projects.

Balancing Mentorship with Independence: ECRs may feel constrained by senior researchers' input, leading to difficulties in developing independent thinking while still seeking guidance.

High school students

- Spark curiosity about science, nature, and its importance.
- Share what we do, why, and how?
- Highlight that our science is meaningful and positive: e.g. "science for peace," CERN as a success story!

Undergraduate students

- Inspire questioning and exploration of new scientific ideas.
- Make science exciting by connecting it to broader challenges.
- Offer guidance and hands-on project experience.
- Show how physics leads to diverse roles and contributions.

Other ECRs

- Boost networking, knowledge-sharing, and growth among ECRs.
- Encourage informal communication for idea exchange and guidance.
- Remind that physics is challenging, but collaboration makes it doable.
- Help ECRs see the impact of their work in the broader scientific context.

Seniors

- Promote open communication across all hierarchical levels.
- Support ECRs by providing guidance and maintaining feedback channels.
- Facilitate knowledge transfer to foster collaboration and career growth.
- Align scientific goals and resources through clear communication.

Simplifying Complex Concepts Engaging Interest Maintaining Attention

> Guidance and Support Balancing Mentorship and Personal Research

> > Balancing life and work Isolation

Balancing Mentorship with Independence

- A few-pages summary on "The Importance of Particle Physics," covering its scientific value and global collaboration.
- A few-page summary on '**The Day-to-Day Life of an ECR**,' aimed at inspiring future researchers.
- Establish a **mentorship program** from senior researchers down-to high school students to encourage knowledge transfer and ongoing support across levels and ensures continuous support.
- **Outreach** from university-level students to general public audience:
 - Opportunities to learn about the field / what people actually do day-to-day <u>https://www.instagram.com/lhcb_uk_students/?hl=en, https://physicsmasterclasses.org/</u>*
- ECR non-technical support:
 - CERN actual support : <u>https://hse.cern/content/mental-health-support</u>
 - Create a platform for ECRs to connect, share experiences, and stay informed. (ECR Forum)
 - A dedicated mailing list <u>ecr-help@cern.ch</u> (does not exist yet!)
 - An anonymous chat support.

• These slides **summarize (not all) key points** from our <u>initial brainstorming meeting</u>. They may still be **incomplete** or **inaccurate**, and **we welcome your input to help shape the working group's direction** and its impact on the future of particle physics.

• There's still **a lot to do**. We **need to define and complete our tasks**, and **time is limited** before the **first draft in mid-December** (only 3 bi-weekly meetings left).

- How to Get Involved ?
 - Raise your hand, grab the mic, and share your opinion.
 - Short on time or feeling shy? Take a moment to <u>fill out the survey</u>. (5 questions)
 - Want to dive deeper? Join our <u>afternoon Zoom session</u> at 3 p.m.
 - Not enough? <u>Fill in the poll</u> so we can choose a time for next week meeting.
 - Overall: Join us on Mattermost (after joining the <u>e-group</u>).

• I'm not an expert, and I may not have all the answers, but together, we can create something truly impactful !

BACKUP

Links to "Career prospects and ECR leadership" WG

Communication as a Career Skill

• Presenting complex research clearly can make a strong impression in interviews and networking.

Communication as a Transferable Skill

• Emphasise that communication is as essential as technical skills, benefiting careers inside and outside academia.

Establishing as a Thought Leader

• For ECRs, confidently presenting ideas fosters recognition and opens leadership roles.

Building Collaboration and Partnerships

• Good communication builds cross-institution networks and partnerships, supporting career growth.

Inspiring and Mentoring

• Articulating scientific ideas helps inspire future scientists and supports mentorship.

Links to "Interplay with neighboring fields" WG

Expanding Research Horizons:

• Engaging with experts from fields like ML enhances techniques and innovation in particle physics analysis.

Accelerating Progress:

• Interest from other fields fosters cross-disciplinary collaboration, driving new insights and techniques in particle physics.

Incorporating Diverse Perspectives:

• Collaborating with different fields broadens approaches and helps solve complex challenges in physics through shared expertise.

Boosting Innovation:

 Adopting methods from fields such as ML, data science, or engineering accelerates advancements in particle physics research and technology

Strengthening Communication within the Scientific Community

Importance of Particle Physics:

- One-page perspective: "The importance of particle physics", highlighting its role from curiosity-driven research to global collaboration.
- Letters aimed at inspiring future ECRs and advocating to CERN, funding agencies, and society to stress the value of continuous support for the field.
- Highlight the need for communication among young researchers to share insights about their work and upcoming projects.
 - Encourage discussions on current and future research initiatives to create an informed and active network of young researchers.
 - Example: In large collaborations, such as those at the LHC, some people may not be well-informed about developments in future projects
- Advocacy for Communication Recognition:
 - Push for the formal acknowledgment of outreach and effective communication efforts within research institutions and collaborations.

Strengthening Communication within the Scientific Community

• Mentorship Programs as a Communication Tool:

- **Structured Mentorship Initiatives**: Establish a multi-level mentorship structure to facilitate knowledge transfer and guidance:
 - Seniors to PhD Students: Senior researchers provide advanced insights, share career advice
 - PhD Students to Undergraduate Students: PhD mentors can introduce undergraduates to the research process, provide project guidance and inspire continued study in particle physics.
 - Undergraduate Students to High School Students: Undergraduate mentors connect with high school students through simple explanations and hands-on activities to spark early interest in physics.

These mentorship layers create a chain of communication that ensures continuous support, growth and knowledge flow across all academic levels.

• ECR non-technical support:

- CERN actual support : <u>https://hse.cern/content/mental-health-support</u>
- Create a platform for ECRs to connect, share experiences, and stay informed.
- A dedicated mailing list <u>ecr-help@cern.ch</u>
- An anonymous chat support

- Need to explain what we do day-to-day as well as what the field is about
 - Our experiments usually take a very long time to be created / run / lead to results ⇒ need to emphasize importance of our work in a world that's increasingly faster
- Outreach to **wider public** in addition to communicating within scientific community
 - Public funds are used to finance particle physics experiment \Rightarrow need support from society
 - E.g. scientific popularisation articles / podcasts
- Outreach to high-school / university-level students
 - Few people actually know / understand what we do
 - Not many particle physics courses even at university level
 - Few other opportunities to learn about the field / what people actually do day-to-day
 - <u>https://www.instagram.com/lhcb_uk_students/?hl=en</u>, <u>https://physicsmasterclasses.org/</u>
 - Need students to become enthusiastic about the field as some of them are the ECRs of tomorrow!
 - E.g. talking about our work in schools, evening seminars in universities, mentorship, more informal chats with younger students, short videos or 'day with me' on social networks, etc.

Outreach: barriers

- Outreach is not always considered part of "normal" duties ⇒ sometimes needs to be done in own time (so less people are likely to do it)
 - All the suggestions in the previous slide are easily implementable with a better recognition of outreach work
- Outreach requires **good communication skills**
 - Communication skills also required in other areas of our work (e.g. scientific discussions, paper writing) and even beyond academia
 - (More) training required from institutions

1. Why Mentorship Matters:

- Bridges Generational Knowledge: Connects experienced researchers with early-career physicists, passing down expertise and lessons learned.
- **Supports Career Growth**: Provides personalized guidance on research, skill development, and navigating career paths both inside and outside academia.

2. Mentorship as Communication:

- Demystifies Complex Topics: Helps mentees understand challenging physics concepts through simplified explanations and real-world examples.
- **Promotes Outreach Skills**: Encourages young researchers to develop communication skills essential for public engagement and scientific presentations.

3. Building a Supportive Community:

- **Peer Learning and Networking**: Fosters a collaborative environment where knowledge and resources are shared among researchers.
- Advocacy for Outreach and Diversity: Mentors inspire mentees to engage in outreach and highlight the importance of inclusive practices in research communities.

4. Preparing for Diverse Careers:

- Transferable Skills: Mentorship highlights how skills like data analysis and problem-solving are valuable in industry, government, and beyond.
- **Real-World Applications**: Demonstrates the relevance of physics skills in broader contexts, preparing mentees for various career transitions.