## **Rise time instability: Introduction**

- The ring impedance can generate an instability that leads the beam to be lost within few turns.
- A feedback system is under development to dump the beam in case of rising instability.
- However, feedback failures might happen and need to be investigated.
- Effects on machine and detectors need to be understood to avoid damage and backgrounds.
- Collimation system must protect the machine/detectors also in this scenario.
- If not, both collimation and feedback systems must be improved.

# **Simulation setup**

- Performed with Xsuite-BDSIM simulation tool.
- Building on the state-of-the-art FCC-ee optics.
- Fast instability introduced as **8 exciter placed along the ring** (one per arc, shown as green points).
- Kicks (H/V) are equally distributed in phase advances across 90° and 180° (smooth change in amplitude within 1 turn).
- The exciter strengths change with time as:

$$k = \frac{A_0}{\sigma_{x,y}} \cos(2 \pi Q_{x,y} t) e^{\frac{t}{\tau}}$$
, where  $\tau$  is the **rise time**.

• Resulting in **betatron oscillations exponentially growing with time**.



Simulation parameters:

- $5 \times 10^5$  45.6 GeV electrons.
- SR (mean model), RF cavities, magnet tapering.
- detailed aperture model, halo and tertiary collimators, SR collimator, wiggler.

#### **Case studies**

- Since the instability can start at any point, it is relevant to **explore the phase dependence**.
- Exciters shifted along the ring to have four different phase advances between the first exciter and the primary collimator.
- 16 different cases have been investigated:

|            | 3 turns                                                        | 6 turns                                                        |                |
|------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------|
| Horizontal | $\Delta \mu_0 = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}$ | $\Delta \mu_0 = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}$ |                |
| Vertical   | $\Delta \mu_0 = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}$ | $\Delta \mu_0 = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}$ | nnlituda V [n] |
| $A_x$      | $[\sigma] = \frac{\sqrt{2 J_x \beta_y}}{\sigma}$               | c                                                              |                |





# **Preliminary results**

Lossmaps at each turn have been generated to study the time distribution of the losses:

- Entire beam is lost in few turns.
- Most of the configuration presents a turn where up to  $\sim 50\%$  of the beam is lost.
- Order of MJ lost across collimators and apertures in one turn.
- The energy lost in first turns might be detected to damp the beam before damages.



#### Horizontal instability: worst case



- Entire beam lost within  $\sim 5(7)$  turns for  $\tau = 3(6)$ .
- From turn 19 (*E*<sub>lost</sub> ~ 400 *J*) to turn 20 (*E*<sub>lost</sub> > 5 *MJ*).
- Losses in the aperture coming from secondary particles or scattered primaries.
- Significant losses close to the IPs, more than in the collimator insertion.

#### Horizontal instability: collimator impacts



Note: Axes are with respect to the collimator system

#### Horizontal instability: losses across collimators

Considering the configuration  $\mu = 0^{\circ} \tau = 3$ :

• Significant losses in the tertiary collimators, efficiently protecting SR collimators.



### Losses at the primary collimators: horizontal

To compare the various cases is useful to look at the losses in the primary wrt time:



#### Vertical instability: worst case



- Entire beam lost within  $\sim 9(14)$  turns for  $\tau = 3(6)$ .
- First loss at turn 21 ( $E_{lost} \sim 3 MJ$ ) then turn 20 ( $E_{lost} \sim 5 MJ$ ).
- Less losses in the aperture compared to the horizontal case.
- Losses are more spread across the turns.

# **Vertical instability: collimator impacts**

#### Considering the configuration $\mu = 0^{\circ} \tau = 3$ :





#### Vertical instability: losses across collimators

Considering the configuration  $\mu = 0^{\circ} \tau = 3$ :

• Significant losses in the tertiary collimators, efficiently protecting SR collimators



## Losses at the primary collimators: vertical

To compare the various cases is useful to look at the losses in the primary collimator wrt time:



### Conclusions

The fast instability could be dangerous if the feedback system fails.

- This instability can cause damage both at the machine and detectors, as well as increasing backgrounds.
- Chances of damaging collimators/detectors. The beam is lost within few turns, almost 50% of beam energy lost in one turn.
- The effect depends also on the phase advance.
- High losses nearby experiments, shower calculation in the detector region is needed.

# Thank you for your attention.



○ FCC



#### **Transverse beam position over turns**



The broad distribution are reasonable if we look at the oscillation during the looses turn

• This animation does not include scattering in the collimators, so the distribution would be even more spread.

## **Fast instability: Introduction**

Assuming the beam as a single particle of charge  $N_b e$  (no coupling) under the influence of an external force(wake fields/impedance) and neglecting the longitudinal motion.

A complex tune shift is generated due to the impedance of the ring  $\Delta \omega = U - jV$ :

- The betatron motion is influenced by such impedance.
- The real part of the impedance define growth/damping rate of the betatron oscillation.
- The instability rise-time is given by:

$$\tau_{x,y} = \frac{1}{V_{x,y}} = \frac{4 \pi Q_{x,y}(\frac{E_t}{e})}{I c \times \{-Re[Z_{x,y}(\omega)\}\}}$$

• If  $\tau > 0 \rightarrow$  betatron oscillations grow exponentially.



For more detalies X. Buffat.