Candidates for Dark matter

G. Bélanger LAPTH- Annecy

Outline

• Dark matter

- What is DM ? What are its properties?
- LHC and DM
- Complementarity with Astroparticle
- A few dark matter candidates -
 - Neutralino, vector boson, right-handed neutrino, scalar

What is DM?

- Strong evidence that DM dominates over visible matter. Data from rotation curves, clusters, supernovae, CMB all point to large DM component
- One of the central questions in PP: what is DM (new particle WIMP)?
 - Likely to be related to physics at weak scale
 - New physics at the weak scale can also solve EWSB
 - Many possible solutions many possible DM candidates
- Dark energy rather related to Planck scale
- NP at weak scale could also explain baryon asymmetry in the universe

Dark matter : a new particle?

• Weakly interacting particle gives roughly the right annihilation cross section to have $\Omega h^2 \sim 0.1$

$$\Omega_X h^2 \approx \frac{3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle}$$

- Many candidates for weakly interacting neutral stable particles
 - Best known is neutralino in SUSY
 - Other models with NP at TeV scale have candidates, only need some symmetry to ensure that lightest particle is stable: UED, Warped Xtra-Dim, Little Higgs...
 - More phenomenological approaches: extra scalar, Dirac fermion
 - Superweakly interacting particles also work (gravitino)

WIMPS

Spin	DM	Model	Motiv.	$\begin{array}{c} \text{Mass} \\ (\text{GeV}) \end{array}$	LHC: New particles	DD (pb)
1/2 Majorana	$\begin{array}{c} \chi \\ \chi $	SUGRA GUT-scale MSSM CPVMSSM NMSSM nMSSM UMSSM sMSSM Walk. Tech.	$SB \\ SB+GUT \\ SB \\ +baryo \\ +\mu \\ +baryo \\ +\mu \\ SB$	$50-2000 \\ 10-2000 \\ 10-2000 \\ 0.2000 \\ > 10 \\ < 50 \\ > 50 \\ < 50 \\ < 50 \\ 30-2000 $	Sparticles +H +H +H+Z' +H+Z' Techni.	$10^{-11} - 10^{-6}$ $10^{-12} - 10^{-6}$ $10^{-11} - 10^{-6}$ $10^{-9} - 10^{-6}$ $10^{-11} - 10^{-6}$ $10^{-9} - 10^{-6}$ $?$
1/2 Dirac	$ u_R $ $ \nu_R $ $ u$	Warped-Xdim LR+Xdim MDM	${}^{ m SB}_{ m SB}$	50 or > 700 50-3000 > 4000	KK particles fermions/GB	$< 10^{-7} < 10^{-7}$
1	B B	UED Little Higgs	SB SB	400-1200 100-500	KK particles T-quarks, W_H	$ \begin{array}{c} 10^{-11} - 10^{-6} \\ < 10^{-10} \end{array} $
0	$\begin{array}{c} H \\ H \\ H \\ \gamma \\ \tilde{\nu_R} \end{array}$	Inert Higgs Twin Higgs xSM UED-6D MSSM $+\nu_R$	$\begin{array}{c} {\rm DM} \\ {\rm DM} \\ {\rm DM} \\ {\rm SB} \\ {\rm SB} + m_{\nu} \end{array}$	50 or > 500 50-600 100-500 50-2000	Scalar Scalar+Z' Singlet, Hinv KK particles Sparticles + Z'	$10^{-12} - 10^{-7}$ $5.10^{-10} - 10^{-6}$ $10^{-11} - 10^{-9}$ $10^{-10} - 10^{-7}$

GUT-scale models include string inspired models (e.g.moduli-dominated), AMSB, Split SUSY, Compressed SUSY, NUHM, mirage mediation

Identifying Dark matter

- We have no evidence of what NP could be but LHC which will probe symmetry breaking mechanism will help discover new particles
- Discovery of WIMP -- complementarity LHC DD
- Determination of properties of new particles (LHC)
 - From this deduce annihilation cross sections for dark matter
 - Prediction for relic density compare with measurement, if "collider prediction" precise enough it means
 - Testing underlying cosmological model
 - Also compute cross section for dark matter scattering on nuclei -> consistent with direct detection results ?
- Observation of DM in Direct or Indirect Detection -- reconstruct density distribution

LHC and dark matter

- How well can the properties of dark matter be determined?
 - Strongly depends on the particle physics model (SUSY or Xtra-Dim or...)
 - Strongly depends on details of given model, mass of new particles, couplings etc..
- What the LHC cannot do:
 - Produce directly large numbers of weakly interacting particle, mainly in decay products of strongly interacting particles
 - Cannot know for sure there is stable particle (missing energy)
 - Say anything directly about dark matter spatial and velocity distributions

Detection of DM

- Direct detection
 - Establish that a new particle is DM
 - Measurement of cross section in different nuclei : compatibility with NP scenario (SUSY or other)
 - Some information on the mass of DM candidate
 - Caveats:
 - assumption about local density and velocity distribution
 - Uncertainties in nucleon matrix elements

• Indirect detection

- Pair of dark matter particles annihilate and their annihilation products are detected in space
- Search for DM in different channels
 - Positrons from DM annihilation in the galactic halo
 - Photons from DM annihilation in center of galaxy
 - Neutrinos from DM in sun
- Consistency checks of different signals
- Check compatibility with NP scenario (SUSY or other)
- Caveat: assumptions on dark matter distribution

Different approaches to DM

• Complementarity

- DM signal in DD/ID *or* NP discovery at LHC
 - DD constrains NP models which DM candidate
 - Potential for DM discovery after LHC
 - LHC constrains NP missing energy but no direct evidence

• Concurrence

- Signals in different types of experiments allow cross-checks
- Possible tests of cosmology, dark matter distribution...

Some examples

- mSUGRA (CMSSM)
- MSSM
- UED
- Right-handed neutrino
- Scalar DM

SUSY – neutralino LSP

• Solution to hierarchy problem : cancel quadratic divergences in Higgs mass

- Unification of gauge coupling
- Boson/fermion symmetry : associate new SUSY particle to each SM particle + extend Higgs sector (additional doublet)
- DM candidate : usually neutralino can also be gravitino

Neutralino LSP

- Neutral spin $\frac{1}{2}$ SUSY partner of gauge bosons (Bino, Wino) and Higgs scalars (Higgsinos) $\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W} + N_{13}\tilde{H}_1 + N_{14}\tilde{H}_2$
- Lightest neutralino is stable because of R-parity (also stabilizes the proton)
- Neutralino is Majorana particle
- Exact nature of neutralino (model dependent) will determine its annihilation properties relevant for relic density, for indirect detection rate, for direct detection through interaction with nuclei in large detector

CMSSM - complementarity

- Most studies at colliders done within context of CMSSM (small number of parameters: 4 ¹/₂ instead 100)
 - Convenient, good for tuning analyses, but not general
 - Somewhat fine tuned from DM perspective – neutralino is in general bino

• LHC

- Good for discovery of coloured particles
- Limited reach when all squarks heavy only chargino/neutralino "light"
- In CMSSM this occur when LSP is mixed bino/Higgsino
- Direct and indirect detection
 - Good prospects for mixed bino/Higgsino

Potential for SUSY discovery at LHC

- pp collider @14TeV
- Operation starts 2008
- Good for discovery of coloured particles: squarks, gluinos < 2-2.5 TeV
- Sparticles in decay chains
- Higgs searches
- Limited reach when all squarks heavy only chargino/neutralino "light"
- Other models : similar reach in masses for coloured particles

CMSSM - complementarity

- Most studies at colliders done within context of CMSSM (small number of parameters: 4 ¹/₂ instead 100)
 - Convenient, good for tuning analyses, but not general
 - Somewhat fine tuned from DM perspective – neutralino is in general bino

• LHC

- Good for discovery of coloured particles
- Limited reach when all squarks heavy only chargino/neutralino "light"
- In CMSSM this occur when LSP is mixed bino/Higgsino
- Direct and indirect detection
 - Good prospects for mixed bino/Higgsino

LHC and DM

- How will LHC see dark matter?
 - Missing energy
 - Sample decay chain
- What can LHC measure?
 - Mass differences (using endpoints) percent level
 - Masses (endpoints +cross-sections + theory) more difficult – Lester, Parker, White '05
 - Some properties of particles: spin.. (Barr hep-ph/0511115)
 - Reconstruct underlying model parameters especially if theoretical assumption

LHC and DM

- How will LHC see dark matter?
 - Missing energy
 - Sample decay chain
- What can LHC measure?
 - Mass differences (using endpoints) percent level
 - Masses (endpoints +cross-sections + theory) more difficult – Lester, Parker, White '05
 - Some properties of particles: spin.. (Barr hep-ph/0511115)
 - Reconstruct underlying model parameters especially if theoretical assumption

CMSSM or mSUGRA

- By 2010 if LHC has discovered SUSY in mSUGRA –> signal in DD accessible to ton-size detectors (few 10⁻¹⁰pb) or even before
- At LHC can distinguish type of SUSY model + can measure mass of SUSY particles→ better prediction of the range for DD rate
- No signal at LHC : if bino/Higgsino LSP will have signal in DD

LHC vs DD in MSSM

- In MSSM, neutralino can have any composition, Higgsino component not only associated with heavy squarks as in CMSSM
- Harder to make general statement about correlation signal at LHC with DD.
- If squarks dominate DD (below 1TeV) they will be quickly found at LHC
- If Higgs dominate, LHC (even Tevatron) might see a heavy Higgs signal
 - pp-> A/H+X-> $\tau\tau$ +X
- A fraction of the MSSM models that give a Higgs signal at colliders also predict a signal in SCDMS (~10⁻⁹ pb)
- Even if no signal at LHC large uncertainties in prediction of DD rate

Within reach LHC No LHC reach

Carena et al hep-ph/0611065

Case study : SPA1a

- Situation better in specific case study
- Assume a model, compute spectrum, estimate error from LHC measurements+ vary all MSSM parameters within these errors
- SPA1A : Annihilation into fermions and Coannihilation with staus
- Relevant parameters : LSP mass, couplings, slepton masses
- LHC: roughly the WMAP precision on $\Omega h^2 \sim 10\%$ can be achieved within MSSM
- Prediction for spin-independent crosssection
 - Observable by 2010
- Factor of 3 uncertainty, improves significantly if know heavy Higgs mass

Baltz, Battaglia, Peskin..

DM in UED

- String theory and M theory : best candidate for consistent theory of quantum gravity and unification of all interactions
- Xtra dim models solve the hierachy problem either with compactified dim on circles of radius R effectively lowering the Planck scale near EW scale or introducing large curvature (warped)
- UED: flat Xdim, all fields propagate in the "bulk"
- Each bulk field has tower of KK states , $m_n \sim n/R$
- Explain:
 - 3 families from anomaly cancellation
 - Dynamical EWSB
 - No rapid proton decay

Vector boson DM – UED

- UED : All SM field propagate through all dim. of space R~TeV⁻¹
- KK parity for proton stability
- Minimal UED: LKP is B ⁽¹⁾, partner of hypercharge gauge boson (spin 1)
- s-channel annihilation of LKP (gauge boson) typically more efficient than that of neutralino LSP
- Compatibility with WMAP means rather heavy LKP, 500-900 GeV
 - Tait, Servant (2002)

Kong, Matchev, hep-ph/0509119

Annihilation of B

• Annihilation channels: WW, ZZ, II, qq, hh

- No need for resonance annihilation
- Also many coannihilation channels
- Direct detection : Higgs or KK quark exchange

UED : LHC vs DD

LHC :

- Search for KK quarks and gluons
- Masses of KK particles nearly degenerate-> with LKP ~TeV, KK quarks easily seen unless too degen.
- Similar to SUSY : missing E signal
- How to differentiate? spin determination + search 2nd KK particles

DD :

- Higgs and KK quark exchange
- Typically smaller than SUSY (scale) σ (SI) ~10⁻⁹ -10⁻¹¹pb
- Even SuperCDMS(1t) can barely probe favoured mass range unless \Deltam small

Right-handed Dirac neutrino

• Can be found in models with warped extra dimension : those models also provide solution to hierarchy problem

Right-handed Dirac neutrino

- Typical framework: sterile Dirac neutrino under SM but charged under $SU(2)_R$
- Phenomenologically viable model with warped extra-dimensions and right-handed neutrino (GeV-TeV) as Dark Matter was proposed (LZP)
 - Agashe, Servant, PRL93, 231805 (2004)
- Stability requires additional symmetry, but symmetry might be necessary for EW precision or for stability of proton
- Either only SM+ V_R or extra symmetry
- v_R can couple to Z through v'_L v_R or Z-Z' mixing –naturally small
- Main annihilation channel Z/Z' exchange

$$\sum_{i=1}^{ZZ'} \left(\begin{array}{c} \overline{f} \\ \overline{f} \end{array} \right) \left(\begin{array}{c} ZZ' \\$$

Direct detection : Dirac neutrino

- Dirac neutrino: spin independent interaction dominated by Z exchange (vector-like coupling) → very large cross-section for direct detection
 - coupling Zv_Rv_R cannot be too large
- Current DM experiments already restricts V_R to be
 - $\sim M_Z/2$, $\sim M_H/2$ or $M(V_R) > 700 \text{GeV}$
- Z exchange: also main mechanism for annihilation of v_R
- Vectorial coupling : elastic scattering on proton << neutron
- Direct detection is best way to probe this type of model
- At LHC: if new particles (KK) at TeV scale, need high luminosity

Scalar dark matter (singlet)

- Extensions of SM Higgs sector that can affect Higgs phenomenology
- No strong theoretical motivation

Scalar DM

- Simplest extension : add scalar singlet to SM + discrete symmetry-> stable scalar
- Singlet couples to Higgses –responsible for annihilation

Higgs exchange also gives spin-independent direct detection

Scalar DM -

- No resonance annihilation needed → DD directly related to annihilation cross-section
 - Good prospects for direct detection
- LHC : singlet modify properties of Higgs decays, (invisible decay)
- LHC can look for those, need high luminosity
- No early signs of NP at LHC, yet possible signal in Direct detection

Barger et al 0706.4311

Indirect detection - remarks

• To have correct relic density must have

 $\langle \sigma v \rangle \, \approx \, 3 \times \, 10^{-26}$

- For indirect detection, v->0, cross-section might be different than the one at freeze-out
 - Typically in UED and v_R model, $\sigma v(0) \sim \sigma v(FO)$
 - MSSM : depends on parameter, if coannihilation dominant $\sigma v(0) < \sigma v(FO)$
- For certain models can have line at m_{LSP} coming from annihilation into 2 photons model dependent
- In UED models or Dirac neutrino model annihilation into light fermions important whereas this is suppressed in MSSM –harder positron and neutrino spectrum

Indirect detection - remarks

- In v_R model : good prospects for detecting HE neutrinos from the sun – $M_{v'}$ <100GeV, v' pairs annihilate directly into v pairs : accessible to AMANDA (max 5-10 events/yr) and Antares
 - Hooper, Servant, hep-ph/050224
- Also good signal in positron –Pamela

• For photons: good prospects for scalar DM while MSSM more model dependent (coannihilation models have small flux)

Conclusions

- Many dark matter candidates (WIMPS) often motivated by NP models introduced to solve the hierarchy problem
- Beyond theoretical prejudice : if LHC discover new particles, might give precious information on NP model and on potential DM candidate complementarity with direct/indirect detection.
- In more favourable cases, detailed measurements of new particle properties can reduce (PP) uncertainty in prediction of relic density and/or cross-sections in direct/indirect detection –might even test cosmological model many detailed analyses are going on
- If no signal at LHC can still expect large cross-sections for direct/indirect detection (model dependent)