R&D for **High Energy Astroparticle Physics**

ASPERA, Paris, July 19-20, 2007

Tiina Suomijärvi IPN-Orsay, France

R&D on photon detectors (by M. Teshima)

- Limited flux / rare events → Large area / Large Volume → Transparent Material (Air, Water, ICE) → Photon detectors
- Examples:
 - Ground based Gamma Ray Astronomy
 - Imaging Air Cherenkov Telescopes
 - High Energy Neutrino Astronomy
 - Water / ICE Cherenkov detectors
 - Ultra High Energy Cosmic Rays
 - Water tanks, Scintillation detectors
 - Ground-based air fluorescence detectors

Improvements and developments

- Higher quantum efficiency / High photo-detection efficiency
 - Lower threshold energy (wider energy range)
 - Equivalent to enlarge telescope
- Very Fast response
 - Better angular / position resolution
 - Better noise reduction
- Pixel detectors and direction sensitive detectors
 - Imaging
 - Better signal to noise ratio
- Associated development
 - Fast, High Integrated Readout Electronics
 - Analogue signal fiber transmission
 - High reflective material
- Service facilities
 - Photodetector measurement/characterization laboratory in EU

Main R&D

- Vacuum photodetectors
 - HPD development
 - PMT development (higher performance)
 - Large PMT/HPD development
- Si-photodetectors
 - SiPM development (higher performance)
 - SiPM applications (Array of SiPM, cooling module)
 - APDs
- Electronics and Analogue Link
 - Readout Electronics (compact, high integration)
 - Analogue fiber optical signal transmission

Vacuum detector HPD R9792U-40 18mm GaAsP HPD by MPI & Hamamatsu

Compact HPD Operating Principle GaAsP photocathode PHOTOCATHODE PHOTON PHOTO--8kV ELECTRONS Electron mbardm 20 time APD Avalanche Multiplication 50 times OUTPUT PIN

R9792U-40 分光感度特性(44本)

PHD : MHP0015

HPD vs. PMT for M.C. y Shower

17m telescope becomes equivalent with 24m telescope

E=29GeV, r=90m, Zd=20° E=36GeV, r=94m, Zd=20° E=45GeV, r=107m, Zd=20°

HPD with 10ns gate (2 Gsamples/s FADC)

PMT with 20ns gate (300Msamples/s FADC)

High Q.E. PMT materials

Potentially High photon detection efficiency

«Advanced study of SiPM»

For further details see:

http://www.slac.stanford.edu/pubs/icfa/fall01.html

Courtesy of Prof.Dolgoshein

R&D on atmospheric monitoring by J. Ridky

- Better quality of atmospheric monitoring to make full use of new technology in order to obtain high quality & precision data
- Main problem: processes in the troposphere are not coupled to what we can observe on the ground
- Build a local weather model -it will be an ad hoc model, the more reasonable input the better results....after some maturing of the model (it takes time!)
- Control aerosols

Monitoring and tools Necessity to monitor: Attenuation - Rayleigh, Mie scattering Cloud coverage Atmospheric profile - vertical density distribution ■ Air glow Lightning • Available tools: Local weather stations Meteorological probes - balloons Star monitors Lidars - single w.l., Raman Aerosol probes, laser shots Light sources - HAM Satellite measurements

Curent situation

	whether stations	balloon probes	star monitor	lidars - single w.l.	Raman lidar	aerosol monitor	satellite data
AUGER	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
H.E.S.S.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√ *	
MAGIC	\checkmark			\checkmark	\checkmark		
R&D EUSO				\checkmark	\checkmark		\checkmark

R&D on radiodetection

by A. Van den Berg

- Long attenuation length in atmosphere and dielectric solids
- Coherence if shower front < wave length
- Polarization measurement provides extra information (magnetic field strength and direction)
- Directional technique (main stream)
 - Cherenkov radiation (Askaryan effect)
 - Geo-synchrotron radiation
- Omni-directional technique (few activities)
 - Radar
 - Molecular Bremsstrahlung

Neutrino detection

 Several neutrino detectors have already taken data (RICE, ANITA, GLUE...)

New projects

ARIANNA Array

Antarctic Ross Ice shelf ANtenna Neutrino Array

Cosmic air shower detection

 Intense R&D activity ■ Set ups • LOPES @ Karlsruhe, DE • CODALEMA @ Nançay, FR • LOIS @ Växjö, SE • Tests on the Auger site (Malargue) Theory Analytical Monte-Carlo

Required R&D

Optimize antenna: dipole (thin, fat, log-periodic, inverted dual-V), tripole
Self-trigger, data handling and transfer
Power budget
Atmospheric conditions
Simulations on energy estimation and particle identification

R&D on acoustic detection by L. Thompson

Interesting for high energy neutrino telescopes: hybrid detection

Existing experiment: Sound Stanford based venture using the AUTEC array, naval hydrophones in the Bahamas

First limit paper published based on 195 days reading out 7 hydrophones *astro--ph/0406105ph/0406105*

R&D challenges

Sensor development

Requires a good theoretical model of piezo and the coupling

Sensor calibration

Calibration by using a large water volume (78m x 10m x 5m) 10m x 5m) a fully calibrated reference hydrophone and a broadband transmitter

Simulations and sensitivity calculations

Computing challenges in HEAP experiments

Data transfer from isolated locations
Storage of data and in particular large amount of monitoring data
Fast simulations