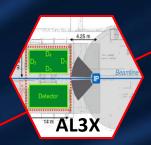
Report to LHCC Referees

Takeaways from presentations and some physics aims.


James L Pinfold for the MoEDAL-MAPP Collaboration

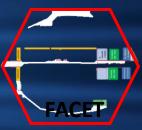
MAPP – Covering Intermediate η

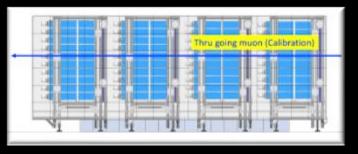


$$0 \le \eta \le 1.5$$

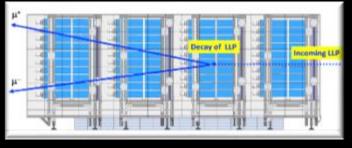
Intermediate

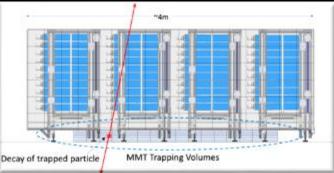
 $1.5 \le \eta \le 4$





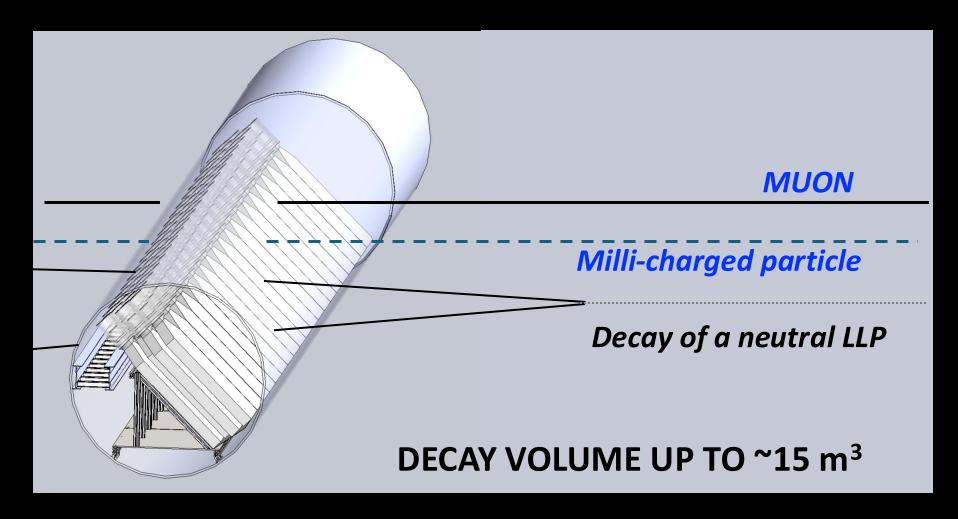
MAPP-1 – Modes of Detection





Millicharged particle detection

Neutral LLP Detection



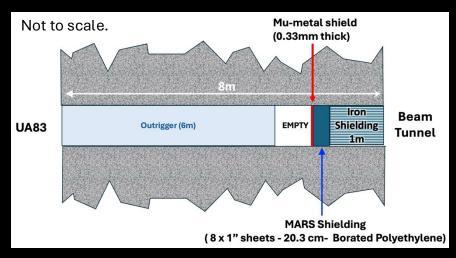
Charged LLP Detection (In conjunction with MoEDAL)

OUTRIGGER – Modes of Detection

OUTRIGGER (embedded in 8m thick concrete wall between UA83 and the beam tunnel.

Outrigger Status

The MAPP-1 Outrigger Technical Proposal Version 1.31, November 19, 2024

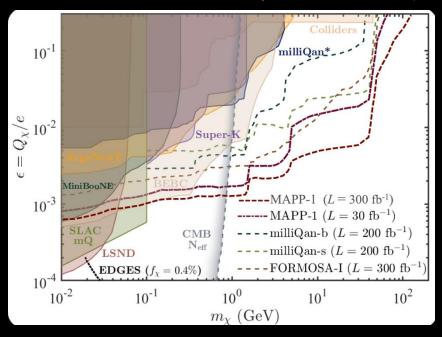

M. Baker¹ S. Behera² P. Davis¹ M. Kalliokoski³ I. Ostrovskiy² J. L. Pinfold^{1,1} R. Soluk¹ M. Staelens⁴ for the MoEDAL Collaboration

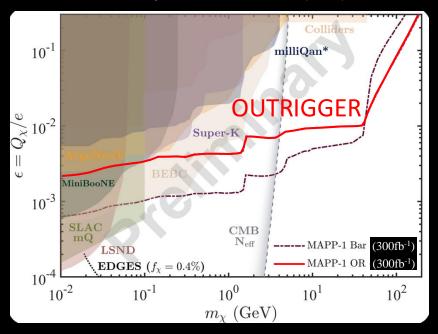
¹Physics Dept., University of Alberta, Edmonton, Alberta, Canada.
²Physics Dept., University of Alabama, Tuscaloosa, Alabama, USA.
³Helsinki Institute of Physics, Helsinki, Finland.
⁴IFIC, Universitat de Valéncia - CSIC, Valéncia, Spain.
^aCommunicating Author, E-mail: jpinfoldualberta.ca.

- The Outrigger Technical Proposal is now complete and in place
 - Three rows of 20 Outrigger slabs with PMTs have been completed
 - The machine tool needed to complete the remaining row of 20 scintillator slabs is in place and working. The work is scheduled to start Nov./Dec. All necessary materials and PMTs have been acquired.
 - Readout, power and calibration electronics identical to MAPP-2's
- The completion of the Outrigger is on schedule for completion ready for installation in February 2025
 - The design of the PMTs bases still needs to be completed but is on track

Outrigger + Shielding Installation

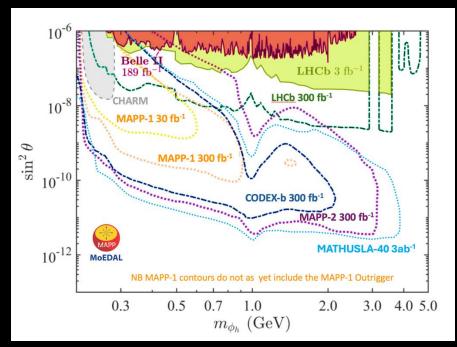
A sketch of the design for the shielding for the Outrigger is shown above

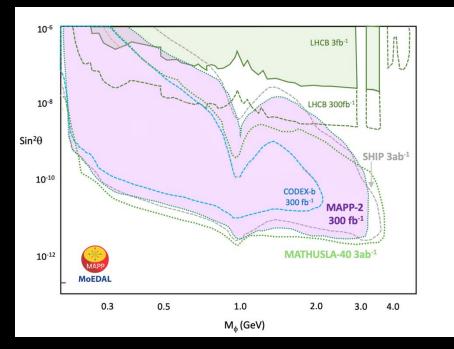



- The schedule provided by the LHC machine (Francois Butin) is shown above
- Our plan to install rails + cable trays for Outrigger installation in-duct prior to installation is deemed compatible with the above schedule

MAPP-1 Sensitivity to Millicharged Matter

milliQan results—Phys. Rev. D 104, 032002 (2021); FORMOSA results—Phys. Rev. D 104, 035014 (2021)





- The 95% CL exclusion Limits for MAPP-1 for mCPs produced by DY mech.
- + direct decays of heavy quarkonia, light vector mesons, and single Dalitz decays of PS mesons.
 - Signal efficiency estimates included
- The OUTRIGGER improve the mass reach 130 GeV → 200 GeV

Using MAPP-1 to Search for LLPs

The Higgs mixing portal admits inclusive $B \to X_s \phi$ decays, where ϕ is a light CP-even scalar that mixes with the Higgs, with mixing angle $\vartheta \ll 1$. See PRD97 (1) (2018) 15023.

- MAPP-1 + Outrigger has a combined fiducial decay volume of 4m³ (MAPP-1) + up to 15m³ (Outrigger).
 - CODEX-b (10³ m³) → CODEX- β (8m³) for Run-3 a >100 reduction in decay volume, without proposed CODEX-b shielding
- Thus, MAPP-1 + Outrigger is competitive as an LLP search detector until Run-4!
 - We envisage MAPP-2 takes over the LLP search starting Run-4 and is competitive with all LLP detectors actual (FASER and SHIP) and planned (CODEX-b and MATUSLA)

Take Aways

- \bigcirc Despite the 3 days \rightarrow 2 days reduction in TS2
 - The exposed MoEDAL NTD plastic was removed and fresh NTD detectors were installed.
 - The readout crate was installed along with 2 x 64 channel RO cards.
 - A longitudinal detector section was cabled (4 x (4x4) bars) and connected to the readout cards for tests.
 - The MAPP-1 detector was prepared for a safety inspection, which it passed – now we can run the detector with the beam on.
 - The MAPP-1 + Outrigger detector gives us a competitive sensitivity for LLPs (eg CODEX- β) as well as milli-charged particles in an intermediate pseudo-rapidity region until LHC's RUN-4
 - The MAPP-1 detector, in conjunction with the MoEDAL's trapping detector, is uniquely sensitive to hyper-long-lived charged LLPs.
 - MAPP-2 is designed to continue the search for LLPs into Run-4 & beyond