τ Branching fractions measurements

Michel Davier

τ miniworkshop, November 8 2024

- Different experimental conditions: LEP, B factories
- ALEPH $\tau^+\tau^-$ sample and impact on τ physics
- Global measurement of branching fractions
- focus on $B_{\pi\pi0}$ and B_e : comparison with other measurements

Spectral functions from hadronic τ decays

Hadronic physics factorizes (spectral Functions)

$$\sigma^{(l=1)} \left[e^+ e^- \to \pi^+ \pi^- \right] = \frac{4\pi\alpha^2}{s} \upsilon \left[\tau^- \to \pi^- \pi^0 v_\tau \right]$$
$$\upsilon \left[\tau^- \to \pi^- \pi^0 v_\tau \right] \propto \frac{\mathsf{BR} \left[\tau^- \to \pi^- \pi^0 v_\tau \right]}{\mathsf{BR} \left[\tau^- \to e^- \overline{v_e} v_\tau \right]} \frac{1}{\mathsf{N}_{\pi\pi^0}} \frac{d\mathsf{N}_{\pi\pi^0}}{ds} \frac{m_\tau^2}{\left(1 - s/m_\tau^2 \right)^2 \left(1 + s/m_\tau^2 \right)}}{\left(1 - s/m_\tau^2 \right)^2 \left(1 + s/m_\tau^2 \right)} \frac{\mathsf{R}_{\mathsf{IB}}(s)}{\mathsf{S}_{\mathsf{EW}}}$$
branching fractions mass spectrum kinematic factor (PS) Isospin correction

Analogous to (1) e⁺e⁻ ratio = π⁺π⁻/μ⁺μ⁻ and (2) ISR method (E_v spectrum to span mass range from threshold to m_τ)

• Measurement of spectral functions from τ hadronic decays:

> $2\pi (\tau \rightarrow \pi^{-}\pi^{0}\nu_{\tau})$: Z (LEP) ALEPH, OPAL; Y(4S) (B-factories) CLEO, Belle dominant > $4\pi (\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}, \tau \rightarrow \pi^{-}3\pi^{0}\nu_{\tau})$: ALEPH, OPAL, CLEO +more ALEPH sub-dominant

- B factories: high luminosity ⇒ large statistics, relatively low energy ⇒ difficult to separate τ⁺τ⁻ from q qbar jets, need hard cuts, low efficiency ⇒ use well-identified clean single tag (leptonic modes)
- LEP: clear signature for τ⁺τ⁻ final state: low multiplicity, back-to-back topology, missing energy/momentum (neutrinos), well separated from background ⇒ high selection efficiency (>90%), small background (~ 1%) pure τ⁺τ⁻ sample, but lower statistics more collimated decays ⇒ need detector with good granularity to separate decay modes
- ALEPH detector with excellent calorimeter granularity (γ , π^0 close to charged particle) \Rightarrow best detector for τ physics (13 BR classes, not competitive for rare modes <0.1%)
 - ⇒ only experiment to perform a global analysis of all major decay modes simultaneously, allowing for many cross checks

specific analyses for 22 modes with kaons (K^{\pm} , K_{s} , K_{L}); improved by B-factories

ALEPH: τ Decay channels

Class label	Reconstruction criteria	Generated τ decay		
e	1 e	$\tau \rightarrow e^- \overline{\nu}_e \ \nu_{\tau}$		
μ	$1~\mu$	$ au o \ \mu^- \overline{ u}_\mu \ u_ au$		
h	1 h	$\begin{array}{ccc} \tau \to & \pi^- & \nu_\tau \\ \tau \to & K^- & \nu_\tau \\ \tau \to & K^{*-} & \nu_\tau \end{array}$	$\begin{array}{ccc} \tau \rightarrow & \pi^- K^0 \overline{K}^0 \ \nu_\tau \\ \tau \rightarrow & K^- K^0 \ \nu_\tau \end{array}$	
$h \pi^0$	$1 h + \pi^0$	$\begin{array}{c} \tau \to \rho^- \nu_\tau \\ \tau \to \pi^- \pi^0 \overline{K}^0 \nu_\tau \end{array}$	$\begin{array}{ccc} \tau \to & K^- \pi^0 K^0 & \nu_\tau \\ \tau \to & {K^*}^- & \nu_\tau \end{array}$	
$h 2\pi^0$	$1 h + 2\pi^0$	$\begin{aligned} \tau &\to a_1^- \nu_\tau \\ \tau &\to K^{*-} \nu_\tau \\ \tau &\to K^- 2\pi^0 \nu_\tau \end{aligned}$	$\tau \to \pi^- \omega \nu_\tau^{(2)}$ $\tau \to \pi^- K^0 \overline{K}^0 \nu_\tau$ $\tau \to K^- K^0 \nu_\tau$	
$h 3\pi^0$	$1 h + 3\pi^0$	$\tau \to \pi^- 3\pi^0 \nu_\tau \tau \to \pi^- \pi^0 \overline{K}^0 \nu_\tau$	$ \begin{array}{l} \tau \rightarrow \ K^{-}\pi^{0}K^{0} \ \nu_{\tau} \\ \tau \rightarrow \ \pi^{-}\pi^{0}\eta \ \nu_{\tau} \end{array} $	
$h 4\pi^0$	$1 h + \ge 4\pi^0$	$\tau \to \pi^- 4\pi^0 \nu_\tau \tau \to \pi^- K^0 \overline{K}^0 \nu_\tau$	$\tau \rightarrow \pi^- \pi^0 \eta \nu_{\tau} {}^{(4)}$	
3h	2-4h	$ \begin{array}{ccc} \tau \to a_1^- \nu_\tau \\ \tau \to K^{*-} \nu_\tau \\ \tau \to K^- \pi^+ \pi^- \nu_\tau \end{array} $	$ \begin{aligned} \tau &\to K^- K^+ \pi^- \nu_\tau \\ \tau &\to \pi^- K^0 \overline{K}^0 \nu_\tau \\ \tau &\to K^- K^0 \nu_\tau \end{aligned} $	
$3h \pi^0$	$2 - 4h + \pi^0$	$\tau \to 2\pi^- \pi^+ \pi^0 \nu_\tau^{(5)} \tau \to \pi^- \pi^0 \overline{K}^0 \nu_\tau$	$ au ightarrow ~K^- \pi^0 K^0 ~ u_{ au}$	
$3h \ 2\pi^0$	$3h + 2\pi^0$	$\tau \to 2\pi^- \pi^+ 2\pi^0 \nu_{\tau} {}^{(6)}$ $\tau \to \pi^- K^0 \overline{K}^0 \nu_{\tau}$	$\tau \rightarrow \pi^- \pi^0 \eta \ \nu_{\tau} \ ^{(7)}$	
$3h \ 3\pi^0$	$3h + \ge 3\pi^0$	$\tau \rightarrow 2\pi^-\pi^+ 3\pi^0 \nu_\tau$		
5h	5h	$\tau \rightarrow 3\pi^- 2\pi^+ \nu_{\tau}$	$\tau \rightarrow \pi^- K^0 \overline{K}^0 \nu_{\tau}$	
$5h \pi^0$	$5h + \pi^{0}$	$\tau \rightarrow 3\pi^- 2\pi^+ \pi^0 \nu_\tau$		

- Monte Carlo generator KORALZ 07 with TAOLA (Z. Was), FSR generated by PHOTOS
- Reconstruction level:
 - > paired γ 's (π^0 identified)
 - > unpaired $\gamma : \pi^0$ with lost γ or radiative decay (LH identified) or merged γ 's (π^0 identified)

 - account of fake γ from hadron
 interactions in calorimeter (LH identif.)

² With
$$\omega \to \pi^0 \gamma$$

³ With $\eta \to \gamma \gamma$
⁴ With $\eta \to 3\pi^0$
⁵ This channel includes $\tau \to \pi \omega \nu_{\tau}$ with $\omega \to \pi^- \pi^+ \pi^0$
⁶ This channel includes $\tau \to \pi \pi^0 \omega \nu_{\tau}$ with $\omega \to \pi^- \pi^+ \pi^0$
⁷ With $\eta \to \pi^- \pi^+ \gamma$

ALEPH global BR measurement

- $n_i^{obs} n_i^{bkg} = \sum_j \varepsilon_{ji} N_j^{prod}$ $B_j = \frac{N_j^{prod}}{\sum_j N_j^{prod}}$ • Determined with simulation • Corrected for data/simulation differences (few per mil)
- Efficient $\tau\tau$ selector exploiting topology, missing energy
 - Efficiency matrix ϵ_{ii} : decay generated in class j, reconstructed in class i, 13 classes up to 5 charged hadrons, 3 π^0

 - FSR included for all channels

	e	μ	h	$h\pi^0$	$h2\pi^0$	$h3\pi^0$	$h4\pi^0$	3h	$3h\pi^0$	$3h2\pi^0$	$3h3\pi^0$	5h	$5h\pi^0$
e	73.26	0.01	0.41	0.45	0.34	0.25	0.74	0.02	0.02	0.05	0.00	0.00	0.00
μ	0.01	74.49	0.63	0.22	0.07	0.21	0.33	0.01	0.01	0.00	0.00	0.00	0.00
h	0.25	0.75	65.03	3.56	0.34	0.06	0.00	1.44	0.10	0.08	0.00	0.80	0.00
$h\pi^0$	1.02	0.26	4.70	68.19	11.31	2.15	0.49	0.48	1.28	0.62	0.05	0.24	0.00
$h2\pi^0$	0.12	0.01	0.33	5.67	57.68	23.13	7.57	0.08	0.39	1.48	0.24	0.04	0.00
$h3\pi^0$	0.01	0.00	0.07	0.41	6.92	43.06	38.15	0.01	0.10	0.37	0.71	0.04	0.00
$h4\pi^0$	0.00	0.00	0.02	0.05	0.67	6.25	25.26	0.00	0.02	0.11	0.19	0.00	0.00
3h	0.01	0.02	0.25	0.07	0.03	0.00	0.00	67.98	6.77	0.80	0.03	22.11	2.52
$3h\pi^0$	0.01	0.01	0.22	0.56	0.27	0.06	0.06	7.29	58.90	16.53	4.46	7.07	16.04
$3h2\pi^0$	0.00	0.00	0.04	0.06	0.10	0.08	0.02	0.41	6.02	40.42	25.02	0.28	0.65
$3h3\pi^0$	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.02	0.41	6.19	28.98	0.00	0.00
5h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	38.70	4.58
$5h\pi^0$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.08	2.99	38.72
Class 14	3.27	4.17	6.38	0.73	1.08	1.71	1.75	0.80	3.66	9.96	13.87	5.03	9.75
sum	77.06	79.72	78.08	79.97	78.81	76.97	74.42	78.56	77.71	76.64	73.64	77.30	72.26

- Large selection efficiency: overall 78.9%, 91.7% in polar angle acceptance
- Rather independent of decay channel (\pm 5%)
- Non- τ background (1.2%) subtracted ٠

ALEPH τ BR measurements without kaons

- Solve linear equations for individual BR
- For each topology modes with kaon subtracted out

mode	$B \pm \sigma_{stat} \pm \sigma_{syst}$ [%]	
e	$17.837 \pm 0.072 \pm 0.036$	
μ	$17.319 \pm 0.070 \pm 0.032$	
π^{-}	$10.828 \pm 0.070 \pm 0.078$	
$\pi^{-}\pi^{0}$	$25.471 \pm 0.097 \pm 0.085$	
$\pi^{-}2\pi^{0}$	$9.239 \pm 0.086 \pm 0.090$	
$\pi^{-}3\pi^{0}$	$0.977 \pm 0.069 \pm 0.058$	
$\pi^{-}4\pi^{0}$	$0.112 \pm 0.037 \pm 0.035$	
$\pi^-\pi^-\pi^+$	$9.041 \pm 0.060 \pm 0.076$	
$\pi^-\pi^-\pi^+\pi^0$	$4.590 \pm 0.057 \pm 0.064$	
$\pi^-\pi^-\pi^+2\pi^0$	$0.392 \pm 0.030 \pm 0.035$	
$\pi^-\pi^-\pi^+3\pi^0$	$0.013 \pm 0.000 \pm 0.010$	estimate
$3\pi^{-}2\pi^{+}$	$0.072 \pm 0.009 \pm 0.012$	
$3\pi^{-}2\pi^{+}\pi^{0}$	$0.014 \pm 0.007 \pm 0.006$	
$\pi^{-}\pi^{0}\eta$	$0.180 \pm 0.040 \pm 0.020$	ALEPH [13]
$\pi^{-}2\pi^{0}\eta$	$0.015 \pm 0.004 \pm 0.003$	CLEO $[27]$
$\pi^-\pi^-\pi^+\eta$	$0.024 \pm 0.003 \pm 0.004$	CLEO [27]
$a_1^-(\to \pi^-\gamma)$	$0.040 \pm 0.000 \pm 0.020$	estimate
$\pi^-\omega(\to\pi^0\gamma,\pi^+\pi^-)$	$0.253 \pm 0.005 \pm 0.017$	ALEPH [13]
$\pi^-\pi^0\omega(\to\pi^0\gamma,\pi^+\pi^-)$	$0.048 \pm 0.006 \pm 0.007$	ALEPH $[13] + CLEO [26]$
$\pi^{-}2\pi^{0}\omega(\rightarrow\pi^{0}\gamma,\pi^{+}\pi^{-})$	$0.002 \pm 0.001 \pm 0.001$	CLEO $[27]$
$\pi^-\pi^-\pi^+\omega(\to\pi^0\gamma,\pi^+\pi^-)$	$0.001 \pm 0.001 \pm 0.001$	CLEO $[27]$

$B_{\pi\pi0}$ measurements

- Strongly dominated by ALEPH
- However average of other measurements consistent with ALEPH with comparable accuracy

Consistency check of ALEPH $B_{\pi\pi0}$ measurement

- Compare measurements of 'adjacent' channels $\tau \rightarrow \pi^- v_{\tau}$, $\tau \rightarrow \pi^- 2\pi^0 v_{\tau}$ with predictions based on lepton universality and isospin, respectively
- Test of feedthrough in the classification with number of γ/π^0
- Consistent within uncertainties

B_e measurements

- Dominated by ALEPH
- Average of other measurements (17.809 \pm 0.067)% consistent with ALEPH

M.Davier tau miniworkshop Nov. 8 2024

Consistency of B_e measurements using lepton universality

- Lepton universality tested at per mil level
- Assuming lepton universality: independent determinations of B_e consistent
- Averaging leads to B_e improved value

ALEPH $\tau^+\tau^-$ sample used for many precision analyses

• EW precision tests: cross section, FB asymmetry, τ polarization

V,A spectral functions (using G-parity), duality quark-hadron and QCD analyses

input to many QCD analyses

ALEPH τ branching fractions and spectral functions

- A long-term effort by the Orsay group
- 1991: first BR analysis (Zhiqing Zhang's thesis)
- 1992-2000: refined analyses on final states and BR modes with kaons
- 1997: V,A spectral functions (Andreas Hoecker's thesis)
- 2000-2002: final BR analysis full statistics (Changzheng Yuan postdoc)
- 2005: detailed Phys. Rep. on τ BR : arxiv:0506.072 linked
- 2013: update of spectral functions (new unfolding technique, Bogdan Malaescu) arxiv:1312.1501 linked
- Thanks to all !