Measurement of Tau Spectral Functions from ALEPH

Laboratoire de Physique des 2 Infinis Zhiqing ZHANG IJCLab, Univ. Paris-Saclay, Orsay

Tau Spectral Functions

The spectral function is the normalised mass spectrum scaled with other kinematic factors

$$v_{\pi\pi^{0}}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}S_{\rm EW}} \frac{B(\tau^{-} \to \pi^{-}\pi^{0}\nu_{\tau})}{B(\tau^{-} \to e^{-}\bar{\nu_{e}}\nu_{\tau})} \frac{dN_{\pi\pi^{0}}}{N_{\pi\pi^{0}}ds} \left[\left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left(1 + \frac{2s}{m_{\tau}^{2}}\right) \right]^{-1}$$

The mass spectrum of the $\pi\pi^0$ final state is obtained by

- subtracting non-tau (small) and tau cross-feed background
- correcting migration and detector resolution effects by an unfolding

 \rightarrow Experimentally, the two key components of the spectral function are

- branching fraction of the decay mode (see the talk by Michel)
- the shape of the mass spectrum

Measured Mass Spectrum

Non-tau background at permille level

Tau cross-feed at percent level under the rho peak

Charged Hadron Momentum Spectrum

Non-tau background at permille level

Excellent agreement data/MC over the full momentum spectrum

Online tau workshop of the muon g-2 TI, 8/11/24

Photon Energy Spectrum

Dotted histo indicates the size of the fake photon corrections (at low energies)

Good agreement data/MC except at the high energy tail (understood)

The analysis performed in two data taking periods 91-93, 94-95

Similar agreement for period 91-93

Online tau workshop of the muon g-2 TI, 8/11/24

π^0 Energy Spectrum

Similar agreement also seen for π^0 energy spectrum

Online tau workshop of the muon g-2 TI, 8/11/24

Zhiqing Zhang (IJCLab, Orsay)

Unfolding

To correct detector resolution effects, unfolding was initially performed with

- SVD (singular value decomposition) technique [Hoecker-Vakhtang 1996]
- However there was an issue in the covariance matrix as pointed out by D. Boito

An Iterative Dynamically Stabilised (IDS) method [Malaescu 2011] used for update in 2013

The new unfolding method uses a weaker regularisation than the SVD approach → The new method induces less smoothing and correlation between mass bins

Performance

ALEPH update 2013

0.4 0.2 0 -0.2 -0.4(UR1-data)/d (UR6-UR1)/d -0.6(UR7-UR6)/d -0.8(data errors)/d 0.5 1.5 2 2.5 3.5 3 s (GeV^2)

Comparison data (d) and reconstructed MC (rMC) for different numbers of iterations → Agreement improves after each iteration Relative correction to the measured spectrum resulting from the unfolding

 \rightarrow Most of the correction is applied in the first iteration

Unfolding Bias

Closure test using pseudodata (pd) — reweighed MC spectrum having similar shape on reconstruction level as the data

Bias = difference between the true pd spectrum and the unfolded one

The fluctuations in the unfolded spectrum after 5 iterations are of mainly stat origin Rebinning to broader bins reveals a negligible syst bias

Comparison of Unfolded Spectra

The new spectrum

- is less smooth
- uses coarser bins at the tails

An example of Correlation Matrices for Vector Spectral Function

They have been carefully checked using pseudodata

Online tau workshop of the muon g-2 TI, 8/11/24

Zhiqing Zhang (IJCLab, Orsay)

Online Availability

Numerical spectral function files and their covariance matrices are available online at this web page: http://aleph.web.lal.in2p3.fr/tau/specfun13.html

➤ They have been used in many phenomenological studies (see e.g. DHZ 2005)