ALEPH τ analysis: sensitivity to MC generators

Michel Davier

τ miniworkshop, December 9 2024

- Follow up from November 8 meeting
- For details on the ALEPH analysis see my talk posted then

ALEPH: τ Decay channels

Class label	Reconstruction criteria	Generated τ decay					
e	1 e	$ au ightarrow e^- \overline{\nu}_e \ u_ au$					
μ	1 μ	$ au ightarrow \mu^- \overline{ u}_\mu \ u_ au$					
h	1 h	$\begin{array}{cccc} \tau \rightarrow \pi^- \nu_\tau \\ \tau \rightarrow K^- \nu_\tau \\ \tau \rightarrow K^{*^-} \nu_\tau \end{array}$	$\begin{array}{ccc} \tau \rightarrow & \pi^- K^0 \overline{K}^0 & \nu_\tau \\ \tau \rightarrow & K^- K^0 & \nu_\tau \end{array}$				
$h \pi^0$	$1~h~+~\pi^0$	$\tau \to \rho^- \nu_\tau \tau \to \pi^- \pi^0 \overline{K}^0 \nu_\tau$	$\tau \to K^- \pi^0 K^0 \nu_{\tau}$ $\tau \to K^{*-} \nu_{\tau}$				
$h \ 2\pi^0$	$1 h + 2\pi^0$	$\begin{array}{c} \tau \to a_1^- \nu_\tau \\ \tau \to K^{*^-} \nu_\tau \\ \tau \to K^- 2\pi^0 \nu_\tau \end{array}$	$\tau \to \pi^- \omega \ \nu_\tau \ ^{(2)}$ $\tau \to \pi^- K^0 \overline{K}^0 \ \nu_\tau$ $\tau \to K^- K^0 \ \nu_\tau$				
$h \ 3\pi^0$	$1 h + 3\pi^{0}$	$\tau \to \pi^{-} 3\pi^{0} \nu_{\tau}$ $\tau \to \pi^{-} \pi^{0} \overline{K}^{0} \nu_{\tau}$	$\tau \to K^- \pi^0 K^0 \nu_{\tau}$ $\tau \to \pi^- \pi^0 \eta \nu_{\tau} (3)$				
$h 4\pi^0$	$1 h + \ge 4\pi^0$	$\tau \to \pi^- 4\pi^0 \nu_{\tau}$ $\tau \to \pi^- K^0 \overline{K}^0 \nu_{\tau}$	$ au ightarrow \pi^- \pi^0 \eta \ u_{ au}^{\ (4)}$				
3h	2-4h	$\begin{array}{c} \tau \rightarrow a_1^- \nu_\tau \\ \tau \rightarrow K^{*^-} \nu_\tau \\ \tau \rightarrow K^- \pi^+ \pi^- \nu_\tau \end{array}$	$\tau \to K^- K^+ \pi^- \nu_{\tau}$ $\tau \to \pi^- K^0 \overline{K}^0 \nu_{\tau}$ $\tau \to K^- K^0 \nu_{\tau}$				
$3h \pi^0$	$2-4h+\pi^0$	$\tau \to 2\pi^- \pi^+ \pi^0 \nu_{\tau} ^{(5)}$ $\tau \to \pi^- \pi^0 \overline{K}^0 \nu_{\tau}$	$\tau \to \ K^- \pi^0 K^0 \ \nu_\tau$				
$3h \ 2\pi^0$	$3h + 2\pi^0$	$\tau \to 2\pi^- \pi^+ 2\pi^0 \nu_{\tau} ^{(6)}$ $\tau \to \pi^- K^0 \overline{K}^0 \nu_{\tau}$	$ au ightarrow \pi^- \pi^0 \eta \ u_{ au}^{(7)}$				
$3h \ 3\pi^0$	$3h + \ge 3\pi^0$	$\tau \rightarrow 2\pi^{-}\pi^{-}$	$+3\pi^{0} \ \nu_{\tau}$				
5h	5h	$ au ightarrow 3\pi^- 2\pi^+ \ u_{ au}$	$ au ightarrow \pi^- K^0 \overline{K}^0 \ u_{ au}$				
$5h \pi^0$	$5h + \pi^0$	$ au o 3\pi^- 2\pi^+ \pi^0 \ u_ au$					

- Monte Carlo generator KORALZ 07 with TAOLA (Z. Was), FSR generated by PHOTOS
- Reconstruction level:
 - \triangleright paired γ 's (π^0 identified)
 - ightharpoonup unpaired ho : π^0 with lost ho or radiative decay (LH identified) or merged ho's (π^0 identified)
 - ightharpoonup remaining unpaired γ counted as $π^0$ in classification
 - account of fake γ from hadron interactions in calorimeter (LH identif.)

² With $\omega \to \pi^0 \gamma$

³ With $\eta \to \gamma \gamma$

⁴ With $\eta \to 3\pi^0$

⁵ This channel includes $\tau \to \pi \omega \ \nu_{\tau}$ with $\omega \to \pi^- \pi^+ \pi^0$

⁶ This channel includes $\tau \to \pi \pi^0 \omega \ \nu_{\tau}$ with $\omega \to \pi^- \pi^+ \pi^0$

⁷ With $\eta \to \pi^- \pi^+ \gamma$

ALEPH global BR measurement

$$n_i^{obs} - n_i^{bkg} = \sum_j \varepsilon_{ji} N_j^{prod}$$

$$B_j = \frac{N_j^{prod}}{\sum_j N_j^{prod}}$$

- Efficient $\tau\tau$ selector exploiting topology, missing energy
- Efficiency matrix ϵ_{ii} : decay generated in class j, reconstructed in class i, 13 classes up to 5 charged hadrons, 3 π^0
- $B_j = \frac{N_j^{prod}}{\sum_j N_i^{prod}}$ Determined with simulation Corrected for data/simulation differences (few per mil)
 - FSR included for all channels

	e	μ	h	$h\pi^0$	$h2\pi^0$	$h3\pi^0$	$h4\pi^0$	3h	$3h\pi^0$	$3h2\pi^0$	$3h3\pi^0$	5h	$5h\pi^0$
e	73.26	0.01	0.41	0.45	0.34	0.25	0.74	0.02	0.02	0.05	0.00	0.00	0.00
μ	0.01	74.49	0.63	0.22	0.07	0.21	0.33	0.01	0.01	0.00	0.00	0.00	0.00
h	0.25	0.75	65.03	3.56	0.34	0.06	0.00	1.44	0.10	0.08	0.00	0.80	0.00
$h\pi^0$	1.02	0.26	4.70	68.19	11.31	2.15	0.49	0.48	1.28	0.62	0.05	0.24	0.00
$h2\pi^0$	0.12	0.01	0.33	5.67	57.68	23.13	7.57	0.08	0.39	1.48	0.24	0.04	0.00
$h3\pi^0$	0.01	0.00	0.07	0.41	6.92	43.06	38.15	0.01	0.10	0.37	0.71	0.04	0.00
$h4\pi^0$	0.00	0.00	0.02	0.05	0.67	6.25	25.26	0.00	0.02	0.11	0.19	0.00	0.00
3h	0.01	0.02	0.25	0.07	0.03	0.00	0.00	67.98	6.77	0.80	0.03	22.11	2.52
$3h\pi^0$	0.01	0.01	0.22	0.56	0.27	0.06	0.06	7.29	58.90	16.53	4.46	7.07	16.04
$3h2\pi^0$	0.00	0.00	0.04	0.06	0.10	0.08	0.02	0.41	6.02	40.42	25.02	0.28	0.65
$3h3\pi^{0}$	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.02	0.41	6.19	28.98	0.00	0.00
5h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	38.70	4.58
$5h\pi^0$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.08	2.99	38.72
Class 14	3.27	4.17	6.38	0.73	1.08	1.71	1.75	0.80	3.66	9.96	13.87	5.03	9.75
sum	77.06	79.72	78.08	79.97	78.81	76.97	74.42	78.56	77.71	76.64	73.64	77.30	72.26

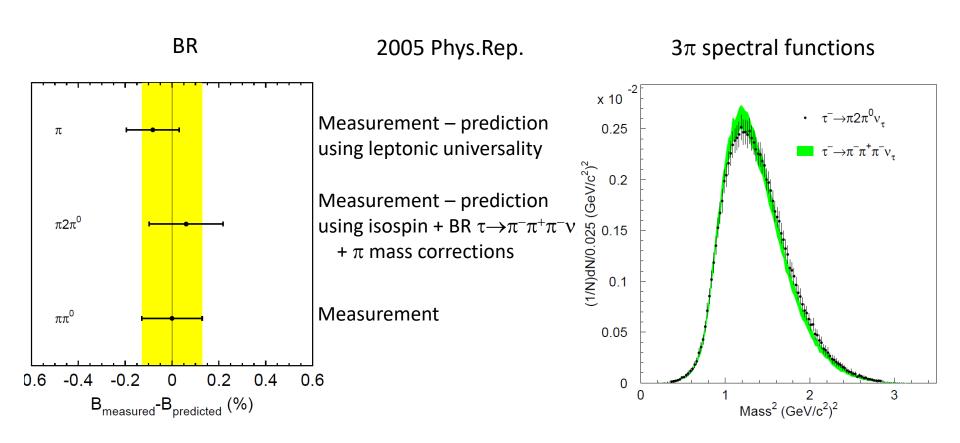
- Large selection efficiency: overall 78.9%, 91.7% in polar angle acceptance
- Rather independent of decay channel (\pm 5%)
- Non-τ background (1.2%) subtracted

Sensitivity of ALEPH analysis to ττ generator

- Selection efficiency matrix between generated and reconstructed τ decay modes determined using $\tau\tau$ event generator KORALZ with τ decay library TAOLA (Z. Was et al.)
- By construction matrix independent of BR used in the MC generator
- MC dependence only through assumed final-state dynamics in each decay mode
- For feedthrough affecting the π π^0 mode, dominant contributions from π and π $2\pi^0$
- π mode is model-independent, except for FSR (PHOTOS tests by Z. Was, comparison of rates for $\tau \rightarrow \nu_{\tau} \pi^{-} \pi^{0} \gamma$ in KORALZ and radiative calculation (Cirigliano et al)) E_{ν}>350 MeV (2.91 \pm 0.04) x 10⁻³ 2.9 x 10⁻³
- π $2\pi^0$ depends on a_1 decay dynamics (mostly $\rho\pi$): studies performed with different final-state dynamics leading to a systematic uncertainty of 0.04% on BR(π $2\pi^0$), similar tests done for higher multiplicity modes, albeit with smaller contributions
- Corresponding systematic uncertainty on BR(π π^0) from π $2\pi^0$ feedthrough is one order of magnitude smaller
- Conclusion: systematic effects from imperfect knowledge of dynamics is negligible compared to experimental systematics

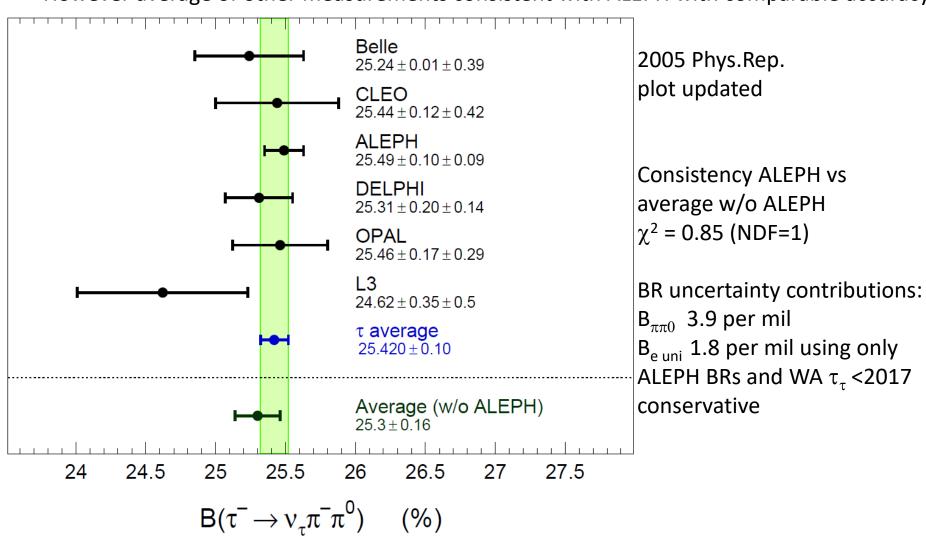
Sensitivity of ALEPH analysis to detector effects

- Feedthrough originates from detector effects
- Loss of tracks (tracking inefficiency, secondary interactions, acceptance edges)
- Mostly photon/ π^0 book-keeping
- Corrections to MC obtained through detailed comparisons between data and MC
- Separation between real/fake γ with multivariate likelihood
- data/simulation rate of fake γ studied and correction applied
- Likelihood separation between radiative and π^0 -produced single photons
- Complete π^0 reconstruction: $\gamma\gamma$ invariant mass, overlapping γ showers (unresolved high-energy π^0 , signal from mass obtained through transverse shower extent), single unpaired γ (loss of low-energy second γ below detection threshold)
- Studies and systematic uncertainties well documented (54 pages in hep-exp/0506072)
- Made possible by the unique properties of the ALEPH EM calorimeter for τ decays transverse granularity: pointing towers 0.9°x0.9° (OPAL 3°x3°) longitudinal segmentation: 3 sections (OPAL no segmentation)
- Consistency check of BR unitarity using class 14 (3.7%, hemispheres with PID problems or rejected by cuts for high multiplicity): BR_{14} indeed consistent with 0, (0.058± 0.039)%


Systematic uncertainties on measured branching ratios

- Summary of detailed studies on the possible sources of systematic biases
- Dominated by γ/π^0 reconstruction, MC uncertainties sub-dominant
- Systematic and statistical uncertainties comparable
- Absolute uncertainties in %

Topology	π^0	sel	bkg	pid	int	trk	dyn	mcs	total
e	0.011	0.021	0.029	0.019	0.009	0.000	0.000	0.015	0.045
μ	0.004	0.020	0.020	0.021	0.008	0.000	0.000	0.015	0.039
h	0.071	0.016	0.010	0.022	0.022	0.014	0.000	0.019	0.083
$h\pi^0$	(0.063)	(0.027)	0.019	0.011	0.045	0.009	0.000	(0.027)	0.090
$h2\pi^0$	0.089	0.021	0.014	0.004	0.007	0.003	0.040	0.028	0.105
$h3\pi^0$	0.056	0.012	0.015	0.000	0.008	0.001	0.008	0.030	0.068
$h4\pi^0$	0.029	0.005	0.011	0.000	0.015	0.000	0.000	0.019	0.040
3h	0.047	0.021	0.018	0.004	0.012	0.014	0.006	0.015	0.059
$3h\pi^0$	0.033	0.017	0.029	0.002	0.041	0.009	0.007	0.018	0.066
$3h2\pi^0$	0.027	0.008	0.015	0.000	0.009	0.003	0.012	0.014	0.038
$3h3\pi^0$	0.010	0.012	0.002	0.000	0.002	0.001	0.010	0.006	0.019
5h	0.002	0.000	0.002	0.000	0.000	0.001	0.000	0.003	0.004
$5h\pi^0$	0.002	0.000	0.006	0.000	0.000	0.000	0.000	0.002	0.007
Class 14	0.013	0.003	0.022	0.002	0.024	0.000	0.000	0.011	0.037


A posteriori checks of the feedthrough treatment

- Compare measurements of 'adjacent' channels $\tau \to \pi^- \nu_\tau$, $\tau \to \pi^- 2\pi^0 \nu_\tau$ with predictions based on lepton universality and isospin, respectively
- Test of feedthrough in the classification according to number of γ/π^0
- Consistent within uncertainties (0.1%)

BR measurements

- $B_{\pi\pi0}$ strongly dominated by ALEPH
- However average of other measurements consistent with ALEPH with comparable accuracy

