NEUTRINOS AT FASER - CROSS-SECTION MEASUREMENTS AND NEUTRINO ENERGY RECONSTRUCTION

Jeremy Atkinson, Universität Bern (jeremy.atkinson@unibe.ch) on behalf of the FASER Collaboration 18th of November 2024, LHCC, CERN

THE FORWARD SEARCH EXPERIMENT

- •Goal: to investigate light, long-lived, weaklyinteracting particles and **TeV-scale neutrinos** produced in the far-forward region of collisions at the ATLAS interaction point (IP1) $\sqrt{s} = 13.6$ TeV.
- High-energy neutrinos of all 3 flavours can be flavour-tagged and investigated.

- **FASER** ν detector: 730 interleaved emulsion films and tungsten plates, resulting in a 1.1 tonne target mass.
- •Number of expected events for 250 fb⁻¹: $\nu_e \sim 1700$, $\nu_\mu \sim 8500$, $\nu_\tau \sim 30$ (Phys. Rev. D 110, 012009).

Results from FASER ν : u_{μ} and u_{e} at the LHC

KINEMATICS PERFORMANCE

• 300 nm position $\frac{2}{300}$ resolution has been 300 achieved, leading to 0.04 mrad angular resolution for a 1 cm $\frac{1000}{1000}$

- Momentum measurement from Multiple Coulomb Scattering (MCS): $\Delta P/P$ at 200 GeV ~ 0.30, performance validated with testbeam.
- EM shower energy found using segment multiplicity in core of EM shower:

 $\Delta E/E$ at 200 GeV ~ 0.25.

CROSS-SECTION MEASUREMENT (PHYS. REV. LETT. 133, 021802)

• Dataset: sub-volume of the 2nd 2022 module, target mass = 128.6 kg, equivalent to 9.5 fb⁻¹, $\sim 1.7\%$ of the data collected to date.

• Selection criteria:

- Vertex reconstruction: $N_{charged} \ge 5$; $N_{\tan \theta \le 0.1} \ge 4$.
- Lepton requirements: E_e or $p_{\mu} > 200$ GeV; $\tan \theta_e$ or $\tan \theta_{\mu} > 0.005$. - Back-to-back topology: $\Delta \phi > 90^{\circ}$.

• First ν_e observation at the LHC - highest ν_e energy ever observed.

•4 ν_e and 8 ν_{μ} CC events were observed, corresponding to a significance of 5.2 σ and 5.7 σ respectively.

• First neutrino cross-section measurement in the TeV range, compatible with SM prediction.

DEVELOPMENT OF NEUTRINO ENERGY RECONSTRUCTION

- Future cross-section measurements should be performed as a function of neutrino energy neutrino energy reconstruction is needed.
- Dataset: FASER GENIE simulation of ν_{μ} CC interactions at truth level with smearing to emulate the effect of MCS in 100 emulsion films and tungsten plates.
- ΣP_{vis} : total momentum of all charged particles scaled by $\langle \alpha \rangle = \langle E_{\nu}^{truth} / \Sigma P_{vis}^{truth} \rangle \approx 1.34$.
- TMVA Boosted Decision Tree (BDT) and k-Nearest Neighbour (KNN) Regression methods investigated.
- Input variables chosen correlate with E_{ν}^{truth} and are stable across PYTHIA6 hadronisation tunes: $P_{smeared}^{lep}$, $\Sigma P_{smeared}^{ChargedHadrons}$ and $1/\tan \theta_{smeared}^{lep}$.
- Energy resolution found in the 100 GeV 1 TeV range as the $r.m.s.(\frac{E^{reco}-E_{\nu}^{truth}}{E_{\nu}^{truth}})$ for all methods.
- Preliminary application of TMVA methods improves resolution across the range to \sim 0.4.

• Improving the resolution to ~ 0.3 in the range of 100 GeV - 6 TeV would allow the muon neutrino cross-section to be measured in 9 neutrino energy bins. • Next steps: add in more variables, including related to EM showers, and investigate different methods to improve the energy reconstruction performance.

