

Glue2 support in gLite CREAM-CE and WMS

Massimo Sgaravatto – INFN Padova Salvatore Monforte – INFN Catania

Glue2 in CREAM-CE

- Initial support for Glue2 in CREAM-CE provided with EMI-1
- But still many things to finalize/fix
- Work tracked in Savannah task #21912
 - Planned to be finished on December
 2011
 - The "Should be finished on" was August 2011
- http://wiki.italiangrid.org/twiki/bin/view/CREAM/CreamGlue2

Deployment scenarios

- CREAM CE can be deployed
 - In cluster mode
 - To be used when there are multiple CE head nodes and/or in the site there are multiple disjoint sets of worker nodes
 - gLite-cluster node and one or more CREAM-CE node
 - In gLite-cluster publising of resources and RunTimeEnvironments related information
 - In no-cluster mode
 - Useful for small sites

Deployment scenarios and Glue2

- No cluster mode
 - All Glue2 objectclasses are published by the resource BDII running on the CREAM-CE
- Cluster mode
 - The resource BDII running on each CREAM-CE just publishes
 - The EndPoint objectclass for CREAM (along with the AccessPolicy objectclasses)
 - The Endpoint objectclass for CEMon (if it is deployed)
 - The resource BDII running on the gLite-cluster publishes all the other objectclasses

Implementation status

- ComputingService
 - Basically done
 - Just to address a problem with Glue2ServiceComplexity in cluster mode
- ComputingEndpoint
 - Basically done
 - Just to enhance the publication of Glue2EndpointServingState
- Policy for the ComputingEndpoint
 - Done

Implementation status (cont.ed)

- ComputingShare
 - Still to do
 - Dynamic batch system information (see next slides)
 - Links to EndPoints and ExecutionEnvironments
 - Finalize for cluster mode
- MappingPolicy for ComputingShare
 - Done for no cluster mode
 - To be finalized for cluster mode

Implementation status (cont.ed)

- ComputingManager
 - Missing dynamic batch system specific information (see next slides)
- Benchmark
 - Done
- ExecutionEnvironment
 - Done
- ApplicationEnvironment
 - To do: see next slides

Implementation status (cont.ed)

- ApplicationHandle
 - Not done, and we don't plan to implement it (for application so far we only published the RTE tags)
- ComputingActivity
 - Not done, and we don't plan to implement it (we never published information about jobs in the infosystem)
- ToStorageService
 - Done
- Endpoint for CEMon
 - Done
- Endpoint for RTEPublisher
 - Done

Batch system dynamic information

- Not too much excitement in the harmonization ideas presented at last AHM
- So Glue2 support on the existing implementation
- dentified and documented in detail what is needed to be done
- Apart from SGE (CESGA), the relevant providers have been implemented and are currently maintained by people who are not part of EMI project
 - LSF: U. Schwickerath (Cern) agreed to do the work
 - Torque: J. Templon (J. Templon) agreed to do the work for the python part
 - Not willing to do the job for the Perl part, but we should we able to manage that
 - Generic scheduler: J. Templon (J. Templon) agreed to do the work

ApplicationEnvironment

- In Glue1
 - We just had to publish a list of RTE tags
 - The default publication generates a Glue Location object for every RTE tag
 - Data volume issue:
 - Some VOs have a huge number of tags, so those objects take a lot of space
 - → We had to drop these Location objects and we just publish the RTEs in the GlueSubcluster
 - (GlueHostApplicationSoftwareRunTimeEnvironment)

ApplicationEnvironment (cont.ed)

- We have the same issue in Glue2 since ApplicationEnvironment is a separate object
- What should we do?
 - Ignore the issue and use a ApplicationEnvironment objectclass for each RTE
 - Consider a different solution, e.g. to group all the tags for a given VO in a single ApplicationEnvironment object
- We need to find and implement a common solution

Some implementation details

- For RTEPublisher and CEMon endpoints using BDII GIP provider
- For the other objectclasses LDIF files plus BDII GIP plugins for dynamic info
 - LDIF files created by Perl scripts which read the relevant values from a configuration file
 - The configuration file is filled by yaim
 - Scripts generating the ldif files run by yaim
 - Less dependent on yaim then before
 - For glue1, yaim writes directly the ldif files

Comparison with ARC-CE

- Checked what is published by a ARC-CE running EMI-1 Update 8 (pgs03.grid.upjs.sk) to see the main differences
 - Some objectclasses are published by gLite but not by ARC, and viceversa
 - E.g.gLite doesn't publish ComputingActivity
 - E.g. ARC doesn't publish Benchmarsks and policies for ComputingEndPoint and for ComputingShare
 - The missing policies is a problem for submission through WMS, since the WMS needs to know who is authorized

Comparison with ARC-CE (cont.ed)

- Different use of some objectclass
 - For gLite a share is a Voview (since many sites do not dedicate queues to Vos)
 - for ARC a share is a queue
- For each objectclass some attributes are published in ARC but not in gLite and viceversa
- For some attributes we publish in different ways (e.g. GLUE2EndpointTrustedCA)

Support for Glue2 in WMS

- The first step is acquiring information from GLUE2 enabled BDII
 - code is almost complete as far as querying computing resources is concerned
 - ObjectClasses involved GLUE2:
 - ComputingService,ComputingManager, ComputingShare, ComputingEndPoint, ToStorageService, MappingPolicy, ExecutionEnvironment, ApplicationEnvironment, Benchmark
 - Coding involving retrieving of StorageService info and MM engine not started yet
 - coding delay also because a storage disaster wiping all the work performed until July 2011 along with 98TB of data at INFN-CT

Information SuperMarket

- ClassAd representation of GLUE2 resources
 - GLUE2 prefix stripped from both objectclass and attributes names and define the first-level Ad in the structured representation
 - a nested classad is created for each objectclass at the lowest hierarchy LDAP level
 - attributes form inherited objectclasses are flattened within nested Ads
 - backward compatibility (when possible)
 - mapping old names to GLUE2 ones using attribute references:
 - GlueHostNetworkAdapterOutboundIP = GLUE2.ExecutionEnvironment.ConnectivityOut;
 - LRMSType = GLUE2.ComputingManager.ProductType;

Information SuperMarket

```
[ GLUE2 = [
                ComputingShare =
                        CreationTime = "2011-06-13T05:53:23Z";
                        ServingState = "production";
                        ID = "creamtest1 alice cream-38.pd.infn.it ComputingElement";
                        ComputingServiceForeignKey = "cream-38.pd.infn.it ComputingElement";
                        MappingOueue = "creamtest1";
                        ResourceForeignKey =
                               "cream-38.pd.infn.it"
                        ServiceForeignKey = "cream-38.pd.infn.it ComputingElement";
                        ExecutionEnvironmentForeignKey =
                               "cream-38.pd.infn.it"
                           };
                        OtherInfo =
                               "CREAMCEId=cream-38.pd.infn.it:8443/cream-pbs-creamtest1",
                               "InfoProviderName=glite-ce-glue2-share-static",
                               "InfoProviderVersion=1.0",
                               "InfoProviderHost=cream-38.pd.infn.it"
                ExecutionEnvironment =
                        [...]
                    ];
    [...]
]]
```


GLUE1 and **Glue2** together ...

- Handling resources exposing both GLUE1.3 and GLUE2.0
 - prioritized ISM purchasing
 - precedence to G2.0 purchasing
 - only G1.3 resources not yet inserted in ISM by G2.0 purchaser considered
 - For that we need to know the glue1 entity mapped to this Glue2 share
 - Possible solution: Shares **should** publish the G1.3 ID under OtherInfo eg:
 - » OtherInfo: GLUE13ID=cream-38.pd.infn.it:8443/cream-pbs-creamtest1-voview1
- JDLs containing attribute specification compliant with
 - GLUE2
 - match ONLY GLUE2 resources
 - GLUE1.3
 - match GLUE13 and might match GLUE2 resources
 - due to restrictions on 1-1 mapping

Many to many relations

- In Glue 2 several relations are explicitly many to many
 - e.g. :different EEs may relate different sets of AEs
 - The canonical bilateral ClassAdMatch might not be generic enough
 - users should explicitly use GangMatch expressions
 - requirements= anyMatch(other.ExecutionEnvironment, target.LogicalCPUs >= 2) && ...;
 - But some limits in the current GangMatch extension
 - works only at the first nesting level
 - » i.e. it is not possible to reference attributes belonging to the j-th AE relevant to the i-th EE of a given Share

Thank you!

EMI is partially funded by the European Commission under Grant Agreement RI-261611