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Chapter 1

Introduction

The European Laboratory for Particle Physics (CERN) is the world’s leading
research center in experimental particle physics. CERN was founded in 1954
and it currently has 20 member states, including Finland from the year 1991
onwards. The laboratory is situated astride the Franco-Swiss border, west
of Geneva at the foot of the Jura mountains.

The latest large accelerator at CERN was the Large Electron Positron
collider (LEP) which ended operation in 2000. It produced high-precision
data for testing the Standard Model, the best description of the subatomic
world available today. The LEP measurements were so accurate that they
provided insight into what may happen at energies beyond those of the
machine itself. All evidence indicates that new physics, and answers to
some of the most profound questions of our time, lie at collider energies
above 1 TeV. This is why a new accelerator, the Large Hadron Collider
(LHC) is to be built at CERN. It will reach higher energies than any previous
accelerator, and notably exceed the present record energy of the Tevatron
at Fermilab with 1 TeV p and p̄.

The LHC is being built inside the 27-kilometer long circular LEP tunnel.
It has been primarily designed to collide protons at an energy of 7 TeV each,
adding up to 14 TeV center of mass energy. The LHC will be fed by existing
particle sources and pre-accelerators. In the collider itself, protons travel
clockwise and anticlockwise in two different beam pipes. At four interaction
points the protons are made to collide head on.

One of the main goals of the LHC is to explain the origin of the mass of
elementary particles, which is one of the fundamental questions in particle
physics. The standard model comes up with an explanation called the Higgs
mechanism. The particle masses are created by an interaction with a hy-
pothetical Higgs field. The model predicts a new scalar particle, the Higgs
boson, that will mediate the interaction. It has not yet been discovered but
if such a particle exists, the LHC should be able to detect it.

The conventional way to detect the Higgs boson is to measure the en-
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CHAPTER 1. INTRODUCTION 2

ergy and the angle of its decay particles after the Higgs boson has been
produceed in hard scattering. The general purpose detectors ATLAS and
CMS are optimised to detect isolated high-energy photons and leptons that
are produced in some decay channels. However, the signal is accompanied
with a huge background. One alternative, and a less studied way to detect
the Higgs boson, is to measure the scattered protons in exclusive processes.
The number of Higgs events in exclusive processes is predicted to be rather
small but the signal-to-background ratio is attractive.

The aim of this thesis is to examine the experimental aspects of the
measurement of the leading protons, i.e. the outgoing protons from such an
exclusive process. A method was developed to reconstruct the kinematics of
the scattered protons from observed trajectories at several carefully selected
locations. With this reconstruction method, the resolution and possible
systematic biases on the momentum loss measurement were studied and
applied to the mass resolution of the hypothetical Higgs boson.



Chapter 2

Theory

2.1 Standard Model

The Standard Model (SM) is an attempt to describe the basic phenomena in
particle physics. Within the SM, there are three types of particles: quarks,
leptons and gauge bosons. Quarks and leptons, both fermions as they obey
Fermi statistics, are the fundamental constituents of matter. They are spin-
1/2 particles and they form three families, each containing a left-handed
quark and lepton doublet and a right-handed quark and lepton singlet.

Table 2.1: Standard Model particles and their interactions.

Quarks
u s b

Fermions
d c t

Leptons
e µ τ

νe νµ ντ

Electromagnetic γ
Bosons Weak interaction W +,W−, Z0

Strong interaction gluons (8)

There are four fundamental interactions between fermions: the electro-
magnetic, strong, weak and gravitational interaction. Only the gravita-
tional interaction has not been incorporated into the Standard Model. The
strength of the gravitational interaction between the elementary particles is
so weak that it has no observable effects at the energies used in experimen-
tal particle physics. These fundamental interactions are mediated by the
exchange of gauge bosons, which carry unit spin [1].

The gauge bosons of the electromagnetic and strong interactions, pho-
tons and gluons, are massless particles. The weak interaction is mediated
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CHAPTER 2. THEORY 4

by the massive vector bosons, W± and Z0. In local gauge invariant theories,
where the observed physical quantities do not depend on a particular choice
of the potential used to describe the fields, gauge bosons should be massless.
In the Standard Model this is solved, still preserving the gauge invariance,
by introducing spontaneous symmetry breaking.

This symmetry breaking is called the Higgs mechanism. In the Higgs
mechanism, the scalar Higgs field creates masses to the massive vector
bosons (W±, Z0), and one massive scalar boson (H). This scalar boson is
called Higgs boson and its mass is a free parameter of the Standard Model.
The fermion masses can be explained by Yukawa coupling of the Higgs boson
to the fermions.

The Higgs boson has not yet been found experimentally and there is a
huge effort to find evidence for it. The results from the LEP accelerator
restrict the Higgs mass to value of MH>114 GeV. In the Standard Model
description of the electroweak data, the virtual effects favour a Higgs mass
to be just above the LEP bound [2].

In particle physics, it is a common choice to use the natural units with
~=c=1. In the natural units, the units of mass and momentum reduce to
those of energy. It is customary to measure quantities in units of GeV, a
choice motivated by the fact that the rest energy of the proton is roughly
1 GeV.

2.1.1 Quantum Electrodynamics

Elementary particle interactions can be described with Feynman diagrams,
as depicted in Fig. 2.2. The contribution of each diagram to the propa-
bility amplitude for a given physical process can be calculated by a set of
mathematical rules. For electromagnetic interactions, this theory is called
Quantum Electrodynamics (QED) and the resulting theoretical predictions
have been verified experimentally.

The symmetries of the theory are described by a U(1) group. QED is
the simplest example of a gauge theory in the sense that it has only one
gauge particle, photon.

The strength of electromagnetic interactions between two charged par-
ticles is expressed by the electromagnetic coupling constant

α(Q2) =
α(µ2)

1 − α(µ2)
3π

log
(

Q2

µ2

) . (2.1)

In this formula, Q2 is the energy range and µ2 is defined as the value of Q2

in case of physical (renormalized) charges. At low energies α'1/137.
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2.1.2 Quantum Chromodynamics

The part of the Standard Model describing strong interactions is called
Quantum Chromodynamics (QCD). It introduces a hidden quantum num-
ber, colour, associated with the strongly interacting particles, quarks and
gluons. Each quark carries a colour charge, which can be exchanged by the
bicoloured gluons. The different colours have been chosen to be named as
red, green and blue. Each colour has also its anticolour. In all physical parti-
cles composed of quarks, the quarks are combined in such a way as to result
in a colourless overall particle. The bound states of quark-antiquark pairs
are referred to as mesons and the three quark states with equal mixtures of
all colours or anticolours are called baryons [3].

The symmetries of the theory are described by a SU(3)-group, which
implies that there are altogether eight different gluon colour combinations,
and the gluons also couple to each other in addition to the ordinary colour
charges.

The strength of strong interactions between two coloured particles is ex-
pressed through the strong coupling constant αs. Its behaviour as a function
of an energy scale can be formulated as

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)
12π

(33 − 2NF ) log(Q2/µ2)
, (2.2)

where NF is the number of quark flavours at the given energy range Q2 and
µ2 is defined as the value of Q2 in case of physical (renormalized) colour
charges. According to Eq. (2.2), as Q2 increases, the value of αs decreases.
Thus the coupling becomes small for interactions at high energies, which
according to the uncertainty principle is equivalent to interactions at small
distances. This effect is called the asymptotic freedom of coloured particles.

By introducing a free parameter Λ through

Λ2 = µ2 exp

[ −12π

(33 − 2NF )αs(µ2)

]

, (2.3)

the expression for αs can be written as

αs(Q
2) =

12π

(33 − 2NF ) log(Q2/Λ2)
. (2.4)

When Q2 is much larger than Λ2, the effective coupling between colour
charges is small, and the particles are in a quasi-free state with respect to
strong interactions. However, when Q2 is small, the quarks and gluons are
combined into strongly bound colourless clusters, hadrons. The exact value
of Λ is a free parameter not predicted by the theory, while experiments
indicate that the numerical value is somewhere between 0.1 and 0.5 GeV.
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The Lagrangian density of QCD, the basis of all theoretical calculations,
is given by

L = q̄ (iγµ∂µ) q − g (q̄γµTaq)F a
µ − 1

4
F a

µνF µν
a . (2.5)

The q and q̄ denote the quark and antiquark fields, respectively, and Ta with
a=1,...,8 are a set of linearly independent traceless 3x3 matrices and γµ are
the Dirac gamma matrices. The gauge fields F a

µν are defined as

FA
µν = ∂µAA

ν − ∂νAA
µ − gfABCAB

µ AC
ν , (2.6)

AA
α is the spin-1 gluon field. The capital indices A,B,C run over eight

colour degrees of freedom of the gluon field, and g is related to the QCD
coupling constant αs by αs = g2/4π. The numbers fABC are the structure
constants of SU(3).

For sufficiently small αs it is possible to use perturbation theory in the
calculations. Perturbation theory is not applicable, for example, to the
bound-state problem of QCD with αs ∼ 1. For large αs practical calculations
directly from the Lagrangian density of QCD are impossible.

2.2 Supersymmetry

Particle physics aims at unifying all the fundamental interactions. The elec-
tromagnetic and weak interactions have already been succesfully unified into
the electroweak theory. The next goal is a grand unified theory (GUT),
where the strong interaction would be combined with the electroweak the-
ory. The most popular theories for grand unification include a new postu-
lated symmetry of nature, supersymmetry. In supersymmetric models, all
elementary particles have a supersymmetric partner, called a sparticle.

In the minimal supersymmetric extension of the Standard Model (MSSM),
the Higgs sector consists of two Higgs doublets which generate five physical
Higgs states: h0, H0, A0 and H±. In the MSSM, there are two free Higgs
parameters. A common choice is the mass of the A0 and tan(β), which is the
ratio of the vacuum expectation values of the two Higgs fields. The other
Higgs masses depend on these two. In non-minimal models all the masses
of the other sparticles have no predetermined values, and the models have
more than 120 free parameters. No sparticle has yet been found experimen-
tally, and the results from the LEP collider restrict the mass of the lightest
supersymmetric particle χ̃0

1 to be Mχ̃0
1

>37 GeV [2].

2.3 Kinematics

The experimental signature of diffraction, see Section 2.4, consists of par-
ticular kinematical and topological configurations of the final state. In this



CHAPTER 2. THEORY 7

Section, the most common concepts of the kinematics of the scattering pro-
cesses are defined and explained.

The center of mass energy is Ecms =
√

s, where s is one of the Man-
delstam variables. For two-body interactions, the Mandelstam variables are
defined as

s = (p1 + p2)
2 = (p3 + p4)

2

= m2
1 + 2E1E2 − 2p1·p2 + m2

2,
(2.7)

t = (p1 − p3)
2 = (p2 − p4)

2

= m2
1 − 2E1E3 + 2p1·p3 + m2

3,
(2.8)

u = (p1 − p4)
2 = (p2 + p3)

2

= m2
1 − 2E1E4 + 2p1·p4 + m2

4,
(2.9)

where p1 and p2 are the 4-vectors of the incoming protons and p3 and p4 the
4-vectors of the outgoing protons. The Mandelstam variables satisfy

s + t + u = m2
1 + m2

2 + m2
3 + m2

4. (2.10)

Frequently used dimensionless kinematic variables are rapidity and pseu-
dorapidity. The rapidity y is defined as

y =
1

2
ln

(
E + pz

E − pz

)

= tanh−1
(pz

E

)

. (2.11)

Under a boost in the z-direction to a frame with velocity v/c = β, the
rapidity changes to y → y − tanh−1 β, and hence the form of the rapidity
distribution is invariant under such boosts. This makes rapidity a very useful
quantity in particle physics. For p � m, the expression for rapidity may be
expanded to obtain

y =
1

2
ln

cos2(θ/2) + m2/4p2 + ...

sin2(θ/2) + m2/4p2 + ...
' − ln tan(θ/2) ≡ η, (2.12)

where cos(θ) = pz/p. Here η is called pseudorapidity. The strong inequality
p � m holds for protons in high-energy accelerators, such as the LHC.

2.4 Diffractive scattering

Pertubative QCD theory allows a good description of hadronic interactions
in hard processes (αs � 1). However, the total cross section is only partly
covered by the hard processes. The rest is due to soft processes with αs ∼ 1.
They cannot be described within perturbative QCD, and other phenomeno-
logical theories are used for calculations of soft processes. Soft processes, in
which no quantum numbers are exchanged between the colliding particles
in a high-energy collision, are called diffractive processes.



CHAPTER 2. THEORY 8

2.4.1 Classification

The wave nature of particles leads to two classes of diffractive phenomena
in hadron-hadron collisions: elastic scattering, i.e. pp → pp, and diffractive
dissociation. The elastic scattering is analogous to the classical diffraction
of light. In the collision, both colliding particles remain intact and no new
particles are created, i.e. the particles just exchange momenta. It can be
described as scattering by a disc, for which the differential cross section has
the form dσ/dt ∼ ebt, where t = (p′−p)2 ≈ −p2

T is the 4-momentum transfer
and b is the slope parameter. The latter is related to the disc radius, R, via
b = R2/4.

In contrast to elastic scattering, the phenomenon of diffractive disso-
ciation has no classical analogue. It may be thought of as a quasi-elastic
scattering of two hadrons, where one of the hadrons is simultaneously ex-
cited into a higher mass state retaining its quantum numbers. This coher-
ent excitation requires not only small transverse but also small longitudinal
momentum transfer. For quasi-elastically scattered protons, the coherence
condition for diffraction takes the form

ξ =
M2

s
≤ mπ

mp
≈ 0.15, (2.13)

where M is the mass of the diffractive cluster, and ξ is the fraction of the
momentum lost by the proton in the collision,

ξ = 1 − pz

pz,max
. (2.14)

Diffractive dissociation can be further subdivided in three different classes:
single diffraction, double diffraction and double Pomeron exchange (or cen-
tral diffraction).

In single diffractive scattering (pp → p + X), one of the two colliding
protons stays intact, while the other dissociates into a final state X. The
process has a very pronounced signature: a leading proton on one side, a few
particles on the other side and between a gap in rapidity, where no particles
are produced. Single diffraction accounts for approximately 10% of the total
hadronic cross sections [6].

In double diffraction (pp → X1 + X2), each incident particle gives rise
to a set of final particles with exactly the same quantum numbers as for
the two initial particles. Double diffractive events are characterized by a
rapidity gap between the two systems.

The double Pomeron exchange process involves two Pomerons emitted
from the initial protons. The two Pomerons collide, creating a diffractive
system with activity in the central region. The signature implies two leading
protons on both sides of the detector, activity in the central part and two
rapidity gaps on both sides. Event topologies for diffractive dissociation
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Gap GapGap Jet JetGap Jet+JetJet+Jet

(a) (b) (c)

φ

η η η

φ φ

Figure 2.1: Dijet production diagrams and event topologies with jet produc-
tion for (a) single, (b) double and (c) central diffraction.

are shown in Fig. 2.1, where the dissociative system(s) contain in addition
jet(s).

All three processes can be tagged by the rapidity gap signature. Single
diffraction and double Pomeron exchange can also be tagged by detecting
the leading proton(s) on the gap side.

The total cross section at LHC energies is typically in the region of 100-
120 mb. About 30% of this total cross section corresponds to elastic scatter-
ing, 10% to single diffraction, 3.5% to double diffraction and 1% to central
diffraction. The rest of the total cross section is covered by minimum-bias
events, which are inelastic events that do not fall into any of the categories
above.

2.4.2 Regge theory

Hadron-hadron interactions, such as pp collisions, are described by QCD.
However, calculating phenomena occuring in the proton collisions directly
from the Lagrangian of QCD is a formidable challenge. Consequently, older
phenomenological theories are used to describe diffractive scattering. Regge
theory is one of them.

In the Regge theory approach hadronic interactions are described in
terms of exchanges of Regge trajectories [7]. According to this theory,
hadrons lie on Regge trajectories l = α(m2) such that if mi is the mass
of meson i, and Si is its spin, then Si = α(m2

i ) with Si = 0, 1, 2, .... In the
calculations, all possible trajectories should be taken into account.

For simplicity, let us consider particles lying on a single linear trajectory

α(t) = α0 + α′t (2.15)

such that α(t) passes through integer values of l at t = m2
l (l = 0, 1, 2, ...). In

this special case the propagator pole representing the scattering amplitude
takes the form

Al(t) '
β(t)

l − α(t)
' β(t)

α′(m2
l − t)

(2.16)
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i.e. there is a ’Regge pole’ in the partial wave amplitude at l = α(t), and
β(t) is the residue function specifying the coupling of the pole to the external
particles. The contribution of the trajectory to the amplitude is

A(s, t) '
∞∑

l=0

(2l + 1)
β(t)

1 − α(t)
Pl(cos θt). (2.17)

Owing to the asymptotic form Pl(cos θ) → (cos θ)l as cos θ → ∞ the ampli-
tude simplifies into

A(s, t) ∼
∞∑

l=0

β(t)(cos θt)
l

l − α(t)
∼ β(t)(cos θt)

α(t) ∼ β(t)

(
s

s0

)α(t)

. (2.18)

In the last step, the interchange rule cos θt ∼ s/s0 has been applied.
Equation (2.18) is the characteristic Regge-pole asymptotic power be-

haviour of the scattering amplitude as a function of s at fixed t stemming
from the exchange of a Regge trajectory of composite particles. It predicts
that in a two-body process the differential cross section as a function of
momentum transfer is given by

dσ

dt
∼ 1

s2
|A(s, t)|2 ∼ F (t)

(
s

s0

)2α(t)−2

(2.19)

where α(t) is the leading Regge trajectory which can be exchanged.
The total, elastic and single diffractive cross sections due to the exchange

of Regge trajectory are given by [5]

σT (s) = β2
Rpp

(0)

(
s

s0

)αR(0)−1

(2.20)

dσel

dt
=

β4
Rpp

(t)

16π

(
s

s0

)2[αR(0)−1]

(2.21)

d2σsd

dξdt
=

β2
Rpp(t)

16π
ξ1−2αR(t)

︸ ︷︷ ︸

fR/p(ξ,t)

[

βRpp(0)g(t)

(
s′

s0

)αR(0)−1
]

(2.22)

where αR = αR(0) + α′t = (1 + ε) + α′t is the leading Regge trajectory,
βRpp(t) the coupling of the trajectory to the proton, g(t) the RRR coupling,
s′ = M2 the R − p center-of-mass energy squared and s0 an energy scale
that is traditionally set to the hadron mass scale of 1 GeV2.

The trajectory parameter α(0) is approximately 0.5 for a Reggeon tra-
jectory. Inserting it into Eq. (2.20), one can see that total cross section
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P

P

H

p1

p2

p3

b̄

b

p4

Figure 2.2: Feynman diagram describing exclusive double Pomeron (P) ex-
change.

decreases as a function of center of mass energy. However, at energies above
10-20 GeV the total cross section starts to increase as a function of center
of mass energy. This is due to exchange of the Pomeron trajectory, which
dominates at high energies. The Pomeron P describes a colour singlet gluon
exchange and its α(0)'1.1.

Regge theory has been shown to provide a quantitatively reliable de-
scription of experimental data [9]. However, at higher energies the Regge
approach becomes infested with unitarity problems. Nevertheless, the the-
ory can still be used for phenomenological calculations.

2.4.3 Exclusive production of the Higgs boson

The Higgs boson can be produced in the exclusive double Pomeron exchange
reaction. In the exclusive process pp→p + H + p with H→bb̄, where the +
sign indicates the presence of a rapidity gap, it is possible to tag the outgoing
protons in such a way that the Higgs boson can be identified. By requiring
the presence of rapidity gaps on both sides of the interaction point and
two b-jets in the central region, the Higgs boson gives rise to a peak in the
missing mass spectrum. The exclusive double Pomeron exchange reaction
is depicted in Fig. 2.2.

The missing mass, i.e. the mass of H, can be calculated from the 4-
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momenta of the incoming and outgoing protons by usint formula

MM2 = (p1 + p2 − p3 − p4)
2, (2.23)

where p1 and p2 are the 4-vectors of the incoming protons and p3 and p4

the 4-vectors of the outgoing protons. If the protons have small transverse
momentum

p2
t = p2

x + p2
y (2.24)

after the collision, then the missing mass can be approximated by

MM2 = ξ1ξ2s, (2.25)

where s is the square of the center-of-mass collision energy (14 TeV at the
LHC) and ξ1,2 the momentum losses of the protons.

It has been proposed that by utilizing the missing mass method, the
Higgs boson mass can be measured to an accuracy of O(1 GeV) per event
[10], whereas the direct measurement of the Higgs mass via its decay prod-
ucts in H → bb̄ results in a mass resolution of only about O(10 GeV) per
event. There exist a wide range of predictions for the cross section for
diffractive Higgs production ranging over many orders of magnitude [11].
Probably the best estimate for the cross section of exclusive central diffrac-
tion is calculated in Ref. [10]; the authors predict the cross section of this
particular reaction at the center-of-mass collision energy

√
s = 14 TeV to

be

σ(pp→p + H + p) ' 3fb (2.26)

for the production of a Standard Model Higgs with a mass of 120 GeV. The
signal-to-background ratio for the same reaction would be

Signal

Background
' 3, (2.27)

which is 100 times larger than the signal-to-background ratio for the in-
clusive reaction pp → HX, H → γγ. However, all experimental aspects
are supposed to have been taken into account in the calculations of signal-
to-background value for the inclusive reaction, which is not case for the
exclusive process.
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LHC and beam optics

The event rate R in a collider is proportional to the interaction cross section
σint. The factor of proportionality is called the luminosity L:

R = Lσint. (3.1)

If two bunches containing n1 and n2 particles collide with a frequency f ,
then the luminosity is

L = f
n1n2

4πσxσy
(3.2)

where σx and σy characterize the Gaussian transverse beam profiles in the
horizontal and vertical directions, respectively. The LHC will be the highest
luminosity accelerator with luminosity of L = 1034 cm−2s−1 and the highest
energy machine with center-of-mass energy

√
s=14 TeV.

3.1 Machine layout

The LHC machine consists of eight bending arcs separated by eight inser-
tions [12]. The arcs are part of the ring occupied by regular half-cells with
three dipoles and a quadrupole. Sextupoles and decapoles are located in the
shadow of the dipole magnet ends. Each of the eight arcs is composed of
23 arc cells, giving a total arc length of 2456.160 m. All arc cells are made
of two identical half-cells. An insertion is the part of a ring between two
arcs. It consists of one dispersion suppressor, one full straight section, and
a second suppressor. The straight sections are numbered as IP1, IP2,..., IP8
and the interaction points (IP) are in those straight sections at IP1, IP2,
IP5 and IP8.

Dipole fields are the proper fields to bend particle beams. The purpose of
quadrupoles is to keep the particle beam together and to generate specifically
desired beam properties at selected points along the beam transport line,
e.g. the strong focusing at the interaction point to obtain a high luminosity.
Higher order poles are used as correctors.

13
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3.2 Beam optics

To describe the motion of particles in the accelerator storage ring, a rotating
coordinate system is used. The coordinate system is defined such that the x-
axis is in the horizontal plane, the y-axis in the vertical plane and the z-axis
is taken to be parallel with the beam pipe. The positive x-axis points to the
outside of the ring and the positive y-axis points upwards. The direction
of a particle track after the collision is defined by the polar angle θ and
the azimuthal angle φ. Here θ is the angle between the particle momentum
vector and the z-axis, i.e.

θ = arctan





√

p2
x + p2

y

pz



 , (3.3)

and its projection onto the x-axis is

θx = arctan

(
px

pz

)

. (3.4)

The azimuthal angle φ is measured around the z-axis

φ = arctan

(
py

px

)

. (3.5)

The differential equation of motion in the transverse plane is given by

u′′ + k(z)u = 0, (3.6)

where u stands for x or y and k(z) is an arbitrary function of z resembling
the particular distribution of focusing along the beam line. The solution for
Eq. (3.6) [13] is

u(z) =
√

ε
√

β(z) cos(φ(z) + φ0). (3.7)

The parameter function β(z) is called the betatron function. In the
interaction point, the betatron function is commonly denoted as β∗ and its
derivative vanishes in the IP. Above, ε is called emittance and it describes
the beam quality and the φ(z) is a phase function given by

φ(z) =

∫ z

0

dz

β(z)
+ φ0. (3.8)

The beam width σbeam
x,y (z) at any position z along the beam line is related

[14] to the beam divergence σ∗

θx,y
and the beam width σ∗

x,y at the interaction
point according to

σbeam
x (z) = vx(z) · σ∗

x⊕Leff
x (z) · σ∗

θx
⊕ξ0·D(z), (3.9)
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σbeam
y (z) = vy(z) · σ∗

y⊕Leff
y (z) · σ∗

θy
(3.10)

where Leff
x,y(z) is the effective length and vx,y(z) the magnification along the

beam line. In Eq. (3.9), D(z) denotes the dispersion which determines the
offset from the reference trajectory. Above, Leff

x,y(z) and vx,y(z) depend on
the betatron phase advance ∆µ(z) =

∫
β−1(z)dz via the following relations:

Leff
x,y(z) =

√

βx,y(z)β∗ sin∆µ(z) (3.11)

vx,y(z) =

√

βx,y(z)

β∗
cos∆µ(z). (3.12)

The value of the beam divergence σ∗

θx,y
at the interaction point is given

by

σ∗

θx,y
=

√
ε

γβ∗
, (3.13)

and the beam width σ∗
x,y at the interaction point is

σ∗

x,y =

√
ε

γ
β∗ (3.14)

where ε is the normalised emittance and β∗ is the betatron amplitude at the
interaction point.

The trajectory of a proton in the transverse plane at a given position z
along the beam line can be expressed using the initial conditions ((x∗, y∗)
and (θ∗x, θ∗y)) at the interaction point via

x(z) = vx(z)·x∗ + Leff
x (z) · θ∗x + ξ·D(z) (3.15)

y(z) = vy(z)·y∗ + Leff
y (z) · θ∗y. (3.16)

3.3 Low/High β∗ running

The nominal operation of the LHC, optimised for maximum luminosity, will
use strong focusing at the interaction points. The nominal optics mode
is called the low β∗-mode, which refers to the low value of the betatron
function β∗ at the interaction point. The smallest β∗ value is limited by
triplet magnet aperture to β∗=0.5 m. In the low β∗-mode the transverse
beam size is small, which increases the luminosity. After the first years of
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Table 3.1: LHC parameters for the low and high β∗ operation.

Parameter Low β∗ = 0.5 m High β∗ = 1100 m

Number of bunches 2835 36
Bunch spacing 24.95 ns 2.5 µs
Luminosity L (cm−2s−1) 1034 1028

Transverse normalized 3.75 3.75
emittance (µm rad)
Transverse beam size 16 740
σ∗

x,y at IP (µm)

Beam divergence σ∗

θx,y
31.7 0.67

at IP (µrad)
Crossing angle (µrad) 2 × 150 0

LHC operation the optimised luminosity will reach 1034 cm−2s−1. In order
to avoid unwanted parasitic encounters at low β∗-mode, the beams cross at
an angle of 2·150 µrad. More design parameters for the low β∗-mode are
given in the left column of Table 3.1.

At the beginning of LHC operation there will be short dedicated runs
with high β∗ -mode. For the design parameters, see right column of Ta-
ble 3.1. During high β∗ operation, the total cross section and the elastic
scattering can be measured by TOTEM [15].



Chapter 4

Detectors

4.1 CMS

The Compact Muon Solenoid (CMS) detector [16] has been designed to
cleanly detect diverse signatures from new physics by identifying and pre-
cisely measuring muons, electrons, taus, photons, jets and missing trans-
verse energy over a large energy range and at high luminosity. The detector
tracking and calorimetry components are to be built within a high-field
(4T) superconducting solenoid, leading to a compact design for the muon
spectrometer. The magnetic flux is returned via an iron yoke which is in-
strumented with muon stations.

The goal of the central tracking system is to reconstruct isolated high pt

tracks and high pt tracks within jets. It consists of silicon pixel detectors,
placed close to the interaction region. The electronic readout is focusing
on an analogue design yielding a good position resolution of 15 µm in both
coordinates. Next come the silicon microstrip detectors, which are able to
withstand the radiation fluences expected over ten years use of LHC. The
tracking system can cover the pseudorapidity range |η| < 5.0.

The task of the electromagnetic calorimeter is to identify and precisely
measure the energies and locations of electrons and photons. The electro-
magnetic calorimeter is split into barrel and end-cap sections to surround
the collision point of the interacting protons. It consists of around 118,000
lead tungstate crystals out of which about 25,000 are in the end-caps.

A hadron calorimeter with copper absorbers will be installed between
the electromagnetic calorimeter and the coil. It plays an essential role in
the identification and measurement of quarks, gluons, and neutrinos by mea-
suring the energy and direction of jets and of missing transverse energy flow
in events. Scintillator tiles equipped with wavelength-shifter fibers are used
as detecting elements.

The very forward calorimeter improves the measurement of missing trans-
verse energy and enables very forward jets to be identified. It covers the

17
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Figure 4.1: Overview of the CMS detector.

pseudoradidity range 3.0 ≤ |η| ≤ 5.0.
Muons are identified in four separate stations, each consisting of several

planes of drift chambers, inserted in the barrel part of the solenoid return
yoke. Each station will also contain triggering planes made of resistive plate
chambers. In the barrel region as well as in the endcaps the momentum is
measured three times: inside the inner tracking volume, just after the coil,
and in the flux return.

For the nominal LHC design luminosity of 1034 cm−2s−1, an average of
20 inelastic events occur every 25 ns, the beam crossing time interval. This
input rate of 109 interactions per second must be reduced by a factor of at
least 107 down to 100 Hz. The reduction of the event rate has been choosen
to be done in two steps. The Level-1 trigger system operates on a subset
of the data collected from each LHC beam crossing. The processing has no
deadtime and the decision to collect the full set of data relating to a given
crossing is taken after a fixed latency of 3 µs. The Level-1 trigger consists
of the trigger chambers of the muon spectrometer and the calorimeter and
global trigger. The output rate from Level-1 is estimated to be around
100 kHz.

After a positive Level-1 trigger decision, the filter farm performs event
selection in progressive stages by applying a series of High Level Trigger
filters. Much information is not available on the time scale of the Level-1
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trigger decision. This information, including information from the tracker
and the full granularity of the calorimeters, is then used by in the High Level
Triggers. Eventually, the High Level Triggers use the full event data for the
decision to keep the event [17].

4.2 Very forward detectors

Good detector acceptance at small angles to the beam direction is essential
for studies of hadronic diffraction. The detector system has to be capa-
ble of seeing both the leading protons at a very small angle. In terms of
pseudorapidity, the detector system has to be able to measure protons with
|η| ≈ 10. This forward region is not covered by CMS, or any other base line
designs of the main experiments at LHC. Therefore, an extension of accep-
tance coverage in the forward direction is necessary for studies of diffractive
scattering.

In order to measure leading protons before they hit the beam pipe walls,
their trajectories have to be tracked inside the beam-pipe close to the beam,
far from the interaction point. Being close to the beam, detectors have to
work in an intense radiation environment and the amount of space avail-
able is constrained. The detectors have to be integrated with the machine
requirements. Changing machine conditions require movable detectors.

4.2.1 Microstation

The microstation [18] design consists of a detector unit which is assembled on
the beam pipe. The unit includes moving sensor planes with their support,
and a cooling system inside a vacuum chamber welded to the beam pipe.
The vacuum chamber has feed-throughs for the electronics and the cooling
system.

The microstations will be implemented with two planes of sensors moving
along the x-axis to approach the beam. The movement is based on piezo-
electric deformation of a ceramic material. The detectors are suspended on
the slides of two linear stepping motors mounted side by side. A simple lin-
ear guide at the bottom, consisting of a thin blade moving in an axial slot,
prevents rotation around the stator shaft. A cooled silicon detector tech-
nology is considered as the main implementation option, possibly including
the use of oxygenated silicon sensors.

The microstation is a novel concept and its development was initiated
with the Finnish State Reseach Centre (VTT). The advantages of microsta-
tions are that they are compact and light detector systems. Their geometry
and materials are compatible with the machine requirements and they will
be integrated with the beam vacuum chamber.
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4.2.2 Roman Pot

Roman Pots are stainless steel containers that allow the detectors to function
close to the beam but outside the machine vacuum. Particles traverse thin
steel windows at the entrance and exit of each pot. The pots are remotely
controlled and can be moved close to the beam during stable beam conditions
and retracted otherwise [14]. Forward detectors in Roman Pots have been
added to many experiments, for example in H1 and ZEUS at HERA and
CDF and D0 at the Tevatron.

While Roman Pots are an established technology, they cannot be easily
integrated with the designed or already existing accelerator magnet lattice.
Since the Roman Pots are operated in atmospheric pressure, the acceptance
and distance to the beam is not always optimal [19].



Chapter 5

Simulation chain

For exclusive central diffractive events, the propagation of produced lead-
ing protons and possible inaccuracies influencing the reconstruction of their
kinematics were simulated in four parts. The events were generated with the
PHOJET and PYTHIA event generators and then the inaccuracies at the
interaction point were taken into account. Propagation of leading protons
along the beam line was performed with MAD and finally the behaviour of
the detectors was simulated.

smearing DetectorMADgenerator
Event IP

Reconstruction

Figure 5.1: Schematic figure of the simulation chain.

5.1 Event generator

Proton-proton collisions were simulated with PHOJET [20]. It is a Monte
Carlo (MC) event generator, which can be used to simulate hadronic multi-
particle production at high energies for hadron-hadron, photon-hadron, and
photon-photon interactions. The ideas and methods used in the program
are based mainly on the phenomenological Dual Parton Model (DPM, for a
review see Ref. [21]) combined with perturbative QCD. Low-pt interactions,
such as central diffraction, are modelled on the basis of Regge theory. The

21
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main types of applications of PHOJET are cross section calculations and
generation of hadronic final states by MC. In this study, PHOJET was set to
produce only pp collisions with exclusive central diffraction (pp → p+X+p).

The central system particle X is unstable and subsequently decays into
the observable, stable ones. The decays of X (X = H → bb̄) were simulated
with PYTHIA [22], which is a frequently used event generator in high-energy
physics. PYTHIA provides the generation of common interactions between
elementary particles such as electrons, positrons, protons and antiprotons,
following to interactions and decays of outgoing particles. However, central
diffractive processes are not available in PYTHIA and therefore it was only
used for the decays of X [23]. PHOJET had no Higgs decay implemented.

5.2 IP Smearing

In real particle collisions, the coordinates of the interaction point (IP), the
angle between leading protons and the beam line (θ) and the beam energy
are never known exactly. In order to simulate the real conditions, the coor-
dinates of IP were smeared with a Gaussian random function, i.e.

xsim = σxrx, (5.1)

ysim = σyry, (5.2)

zsim = σzrz, (5.3)

where σ(x,y,z) is standard deviation of the (x, y, z) and r(x,y,z) is a normalized
Gaussian random function. IP smearing of the z-coordinate has not been
studied here, because the z-position is foreseen to determine from the tracks
of the two b-jets to an accuracy of few 100 µm. The standard deviations for
baseline design are shown in Table 5.1.

The smearing of the angle θ was performed by adding a Gaussian random
function to the θ-value given by the physics event generator. Thus θsim =
θgen + σθr. The smearing of the angle θ is also called beam divergence.

The uncertainty of the leading proton energy depends linearly on the
uncertainty of the beam energy. The effect has been taken into account by
multiplying the energy given by the event generator by a Gaussian number,
whose expectation value is 1. Thus the simulated energy of leading protons
is calculated as Esim = Egen(1 + σEr). Here σE is also called beam energy
spread.

In addition, the beam divergence and the beam energy spread affect the
momentum components, which are calculated with simple geometry from
simulated angle and energy. The formulas for momentum components are

px = Esim sin(θsim) cos(φ), (5.4)
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py = Esim sin(θsim) sin(φ), (5.5)

pz =
Esim

√

1 + tan2(θsim)
. (5.6)

Table 5.1: Overview of baseline IP parameters.

σx,y σz σθx,y σE

16 µm 5 cm 30 µrad 10−4

5.3 Beam optics simulation

The trajectories of the scattered protons were simulated with MAD (Me-
thodical Accelerator Design) [24]. MAD is a tool for charged-particle optics
in alternating-gradient accelerators and beam lines. In other words, MAD
simulates how various accelerator structures affect the beam particles in the
beam pipe. It can handle both very large and very small accelerators, and
solve various problems on such machines. In this study, MAD was set to
use the LHC optics version 6.2 [25]. The inaccuracy of magnetic element
alignment and the deviation of magnetic field strength can also be taken
into account in MAD.

After each accelerator element, we checked whether the proton had hit
the beam pipe wall or not. The beam pipe was approximated to be a circle
with 3.0 cm radius. If the path of the proton was not inside the circle, the
position where the proton was lost was stored for further investigations.

5.4 Detector simulation

In a case when the proton has not hit the beam pipe wall before the detector
location, the next step is to study whether the detector is able to register
the particle. For particles with small momentum loss ξ, the limiting factor
is how close to the beam leading protons can be measured. This boundary
is given by

∆ = k · σ(z) + δ, (5.7)

where σ(z) is the beam size at the given location, k is the dimensionless
approach of the detector to the nominal beam position and δ is the detector
dead space. Thus k · σ(z) describes how near to the beam the detector can
be placed as a multiple of beam size at a given location. The detector dead



CHAPTER 5. SIMULATION CHAIN 24

Table 5.2: Overview of detector parameters used.

detector beam position beam position detector
resolution resolution offset offset

σx 10 µm 5 µm c 10 µm -10 µm

space approximates the region within which the detector cannot register
particles. It consists of the radiation shielding and the dead space of the
detector itself. In the baseline simulations 10σz approach and 0.1 mm dead
space have been used. The chosen baseline values might be somewhat too
optimistic. The size and the shape of the beam pipe before the detector
position and the size of the detector determine the upper bound on ξ for the
measured protons with large ξ value.

The inaccuracy of the detectors in measuring the position of protons was
taken into account by smearing the detector coordinates. The coordinates
were smeared by adding to them a Gaussian random function as described
in Section 5.2, i.e. xreal = xsim + σxr, were σx is standard deviation of the
x and r is a normalized Gaussian random function. All the coordinates
are smeared independently of each other and this effect is called detector
resolution. No specific detector implementation (e.g. strip or pixel detector)
has been used.

The beam position is not known exactly either. Consequently, this effect
was taken into account by smearing coordinates of the protons by adding
to them a Gaussian random variable as described above. In one detector
location, the coordinates measured in two different stations are smeared by
adding to them the same Gaussian random variable.

The proton beam is not exactly in the middle of the beam pipe. Con-
sequently, the absolute distance between the detector and nominal beam
position is not precisely known. This beam offset was simulated by adding
a constant in the coordinates at both stations, i.e. xreal = xsim + c, where c
is the offset.

Detector misalignment was taken into account by adding a constant num-
ber in the coordinates only at the second station at one detector location.
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Momentum reconstruction

The basic principle of reconstructing the proton momentum is to find a
direct way to calculate the kinematic variable ξ (momentum loss) or θ∗

x,y

(projection of polar angle) from the measured coordinates of the leading
protons. The mass of the central system can then be calculated by using
the missing mass method.

In order to measure leading protons before they hit the beam pipe wall,
their trajectories have to be tracked inside the beam pipe close to the beam
far from the interaction point. Since the approach of the detector to the
nominal beam position is limited, protons with small ξ cannot be detected
in the same location as protons with larger ξ, see Section 7.1. Therefore,
we have chosen three different detector locations: 215 m, 308 m and 420 m
from the interaction point. At the 215 m and 420 m detector locations, the
trajectories of the protons are measured at two detector stations separated
by 10 m. There are no magnetic elements between the two stations and thus
the projections of the polar angle θx,y at these locations can be calculated
using simple geometry from the measured coordinates at the two stations.
The two observables in ξ reconstruction are x215 and θx,215 at the 215 m
location and x420 and θx,420 at the 420 m location.

At the 308 m location, there is not enough space for two detector stations.
The trajectories of leading protons are measured at 308 m and 338 m from
the IP, two dipole magnets between them. In the reconstruction of ξ, the
two observables used are the coordinates x308 and x338. Previous studies
have shown that only one observable, e.g. x, is insufficient for precise ξ
reconstruction at all the three locations.

6.1 Coordinate transformation

Figure 6.1 shows the distribution of leading protons measured at the 420 m
and 430 m locations. In the upper plot, each colour corresponds to a 0.0005
range in ξ-values, and in the lower plot each colour corresponds to a 28 µrad

25
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range in θ∗x. The smallest ξ value, ξ=0.002, lies in the top right corner of
the distribution while the largest ξ value, ξ=0.015, lies in the bottom left
corner of the distribution.

As can be seen in Fig. 6.1, different ξ values are well separated if both
coordinates are known. In other words, a certain pair of the measured
observables corresponds to a certain ξ value as well as a certain θ∗

x value.
Hence ξ and θ∗x can be reconstructed from the two measured observables
independently of each other.

There prevails a strong correlation between the two observables in all
three locations. In order to spread the data (and to produce more accurate
results), a coordinate transformation was made. The coordinate transfor-
mation was performed by making a profile1 plot of the aforementioned plot,
fitting a linear function in the profile plot and then choosing a vector parallel
with the linear function and a vector orthogonal to the linear function as
transformed coordinates. The same distribution as in Fig. 6.1 is displaced
in these transformed coordinates in Fig. 6.2. The coordinate transformation
preserves the separation of different ξ and θ∗

x values.

6.2 Momentum reconstruction with 3-dimensional
fitting

At the 308 m and 420 m locations the parametrisation ξcalc = f(x′, y′) was
carried out with a 3-dimensional fitting. With the parametrisation esti-
mate ξcalc can be calculated for all pairs of transformed coordinates (x′, y′).
Parametrisation for ξ reconstruction was preferred due to the efficiency of
computing.

6.2.1 Reconstruction at the 308 m location

At the 308 m location, coordinates were transformed according to

x′ = x338 − 3.2522x308

y′ = x338 + 3.2522x308 .
(6.1)

For determining parametrisation, we defined the average ξ for a given set of
(x′, y′). In the basis of the transformed coordinates (x′, y′), the distribution
was projected onto a 2-dimensional histogram and the histogram bins were
filled with normalized ξ-values. Normalization was done by dividing the
ξ-weighted number of hits by the total number of hits in a bin.

The 2-dimensional ξ-weighted histogram was plotted as a 3-dimensional
lego plot, in which the height of bars corresponds to the normalized, i.e.

1In a profile plot the horizontal axis is divided into a certain number of bins. Each

bin is given the average value of the variables in that bin and the error bars indicate the

spread.
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Figure 6.1: Distribution of protons measured at the 420 m location. In the
upper plot each colour corresponds to a ξ range |ξmax−ξmin|=5·10−4 while in
the lower plot each colour corresponds to a θ∗

x range |θ∗x,max−θ∗x,min|=28 µrad.
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Figure 6.2: Distribution of protons measured at the 420 m location after
coordinate transformation. In the upper plot each colour corresponds to a ξ
range |ξmax − ξmin|=5·10−4 while in the lower plot each colour corresponds
to a θ∗x range |θ∗x,max − θ∗x,min|=28 µrad.
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Figure 6.3: a) The 3-dimensional lego plot of normalized ξ values at the 308
m location and b) the fitted surface.

averaged ξ-value. The 3-dimensional lego plot is depicted in Fig. 6.3a. To
these average values, a surface f(x′, y′) was fitted. Before fitting most of the
empty bins were excluded and the fitting was performed only in a restricted
area. The fitted surface can be seen in Fig. 6.3b.

Many different kinds of functions were studied for the surface fitting. For
reconstructing the ξ using the measured coordinates at the 308 m location
the function

ξ308
calc(x

′, y′) = c1 sin(x′) + c2 sin(y′) + c3x
′ + c4y

′ + c5x
′y′ + c6 (6.2)

proved to yield the best results. In Eq. (6.2), x′ and y′ are the transformed
coordinates according to Eq. (6.1) and the cn are constants from the fit.

The reconstruction was improved by fitting two separate surfaces of the
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form (6.2) on the lego plot. Further small scale improvements were done by
plotting the absolute error between ξ and ξcalc as a function of the trans-
formed coordinates. The dependence of the transformed coordinates was
corrected with a correction function, which was subtracted from the surface
equation. The correction functions were second and third order polynomi-
als of the transformed coordinates. The results of the reconstruction are
discussed in Section 6.4 and a more precise description of the 3-dimensional
fitting for the 308 m location is given in Ref. [26].

6.2.2 Reconstruction at the 420 m location

The method to reconstruct ξ from the observables at the 420 m location was
performed in a way similar to that for the 308 m location. The transformed
coordinates

x′ =250783θx,420 − 4321x420 + 1

y′ =250783θx,420 + 4321x420
(6.3)

were chosen and the function

ξ420
calc(x

′, y′) = a1x
′3 + a2y

′3 + a3x
′2y′ + a4x

′y
′2 + a5x

′2 + a6y
′2

+a7x
′y′ + a8x

′ + a9y
′ + a10

(6.4)

for surface fitting proved to yield the best results. The reconstruction was
improved by fitting three separate surfaces of the form (6.4) on the 420 m
lego plot. For a more precise discussion about the reconstruction from the
observables at the 420 m location, see Ref. [27].

6.3 Momentum reconstruction with linear inter-
polation

However, at the 215 m location 3-dimensional fitting is not sufficient to
enable the reconstruction well enough. The dispersion at the 215 m location
is smaller compared to the dispersion at the 308 m and the 420 m locations,
which causes different ξ-values not to be as clearly separated. Instead of
3-dimensional fitting, a two-dimensional grid with linear interpolation was
used. In order to achieve better accuracy for the reconstruction with this
grid, a coordinate transformation

x∗ =
0.5

x + 0.005
+

0.5

θx + 0.001
(6.5)

y∗ = 0.58458 · 10−2x − θx (6.6)
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was introduced for clockwise moving protons. The coordinate transforma-
tion for anticlockwise moving protons was similar except that the constant
coefficient 0.58458 in the definition of y∗ was shifted to 0.42929.

The grid was constructed of 300 000 events in such a way that the range
considered along the x∗- and y∗-axis was divided into intervals of equal
size. Each grid point was given the average ξ-value in that bin. Let the
sequence a1, a2, ... be the tabulated values of x∗ and the sequence b1, b2, ...
the tabulated values of y∗. If there exists subscripts i and j (i and j run
through the grid points) for input values x∗ and y∗, such that ai ≤ x∗ ≤
ai+1, bj ≤ y∗ ≤ bj+1, the following algorithm was carried out

t = (x∗ − ai)/(ai+1 − ai)

gj = (1 − t)f(ai, bj) + tf(ai+1, bj)

gj+1 = (1 − t)f(ai, bj+1) + tf(ai+1, bj+1)

u = (y∗ − bj)/(bj+1 − bj)

fappr = (1 − u)gj + ugj+1.

(6.7)

The vector f(ai, bj) consists of the averaged ξ values at the fixed grid point
(ai, bj).

6.4 Accuracy of reconstruction

The correctness of the reconstruction methods was examined by studying
the relative error, i.e.

ξ − ξcalc

ξ
. (6.8)

The relative error as a function of ξ is shown in Fig. 6.4 for clockwise moving
protons and in Fig. 6.5 for anticlockwise moving protons. As can be seen in
the figures, the relative spread for all detector locations at both sides is of
the order of 0.002. The spread for the 308 m and 420 m methods is slightly
dependent on ξ. The reconstruction methods for the 215 m location can
reproduce ξ without systematic shift in the relative error, but the methods
for the 308 m and 420 m locations affect some systematic ξ dependent shift
on the reconstructed ξcalc values.

Linear interpolation, which is used for the 215 m location, produces a
smoother distribution of relative error than the 3-dimensional fitting. How-
ever, linear interpolation is computationally tougher than 3-dimensional fit-
ting and the analytical formula f(x′, y′) for calculating the recostructed ξ
value was preferred. If needed, the 3-dimensional fitting method could be
improved by calculating average ξ of more than 20 000 events, which were
used here, and optimising the form of the surface. Linear interpolation can
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Figure 6.4: Relative error of the ξ reconstruction method for clockwise mov-
ing protons.

also be used for the 308 m and 420 m locations and for the 215 m location
it could be improved by using more events for grid construction.

The relative error caused by the method used is negligible compared to
the inaccuracy effects to be discussed in Ch. 7. Therefore, the accuracy of
the reconstruction is clearly sufficient.
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Figure 6.5: Relative error of the ξ reconstruction method for anticlockwise
moving protons.



Chapter 7

Results

In this Chapter, the acceptance of the carefully selected detector locations
and the accuracy of the momentum reconstruction and mass resolution due
to several inaccuracies has been studied. The inaccuracies include five reso-
lution effects and two systematic shifts. The resolution effects are detector
resolution, beam position resolution, transverse beam size, angle divergence
and energy spread, and the systematic shifts are absolute beam position
and detector misalignment. Each inaccuracy effect is described more pre-
cisely in Ch. 5. The effects of these inaccuracies have been studied using the
reconstruction methods described in Ch. 6.

The inaccuracy in the alignment of the magnetic elements and the varia-
tions of magnetic field strength with respect to nominal values will also affect
the values of the reconstructed ξ. They were not studied in this thesis.

7.1 Acceptance

The detector acceptance, i.e. the fraction of scattered protons which reach
the detector, depends on the area in which the detector can measure the
outgoing protons. The lower limit in the ξ acceptance crucially depends on
the closeness of the approach and secondly on the active size of detector.
The size and shape of the beam pipe before the detector position determine
the upper limit in ξ acceptance.

At 215–430 meters from the interaction point, the beam size is 80–360 µm
and the baseline approach to the nominal beam position is 10σ. The accep-
tance for the approach of 10, 15 and 20σ with 0.1 mm dead space is shown
in Fig. 7.1 with solid, dashed and dotted lines, respectively.

Detector dead space is the approximated width of radiation protection
and other structures of the detector between the beam and the sensor inside
the detector. It is the region within which the detector cannot register
particles. In Fig. 7.2, the acceptance for 0.1 mm dead space is expressed
with solid lines, for 0.5 mm dead space with dashed lines and for 1.0 mm

34
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Figure 7.1: The ξ acceptance for clockwise moving protons with different
detector approaches to the beam for all three detector locations. The solid
lines correspond to a 10σ approach, dashed lines to a 15σ approach and
dotted lines to a 20σ approach. Detector dead space is constant (0.1 mm)
in all cases.
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dead space with dotted lines. The approach was set to 10σ in the figure.
As can be seen in Figs. 7.1 and 7.2, it is more important to obtain

the closest possible approach than small detector dead space at the 420 m
location.

In the following simulations we have used a detector with 10 cm half
width, 10σ approach to the beam and 0.1 mm dead space.

The detector locations were chosen such that the acceptances of different
locations overlap. As can be seen from Fig. 7.3, the full acceptance from
ξ ≥0.002 can be covered with the three selected locations. In the figure, the
solid line corresponds to the acceptance at the 420 m locations, the dashed
line to the 308 m location and the dotted line to the 215 m location.

From Fig. 7.3 one can see that the acceptance is different for clockwise
and anticlockwise moving protons. This is caused by a larger dispersion
on the negative side of the interaction point. The dispersion affects the x
coordinate of the scattered protons by displacing protons more away from
the nominal beam position, see Eq. (3.15). Consequently, the detector is
able to measure protons with slightly smaller ξ values but the acceptance of
protons with large ξ values is decreased. The scattered protons with large
ξ values hit the beam pipe before reaching the detector.

The mass acceptance of the central system is shown in Fig. 7.4, where
the dotted line is the combined mass acceptance of all three detector loca-
tions, the dashed line is the combined mass acceptance of the 215 m and
the 420 m locations and the solid line corresponds the mass acceptance of
the 215 m location only. The mass values from where the mass acceptance
is greater than 0.5 are 140 GeV, 170 GeV and 620 GeV, respectively to the
aforementioned combinations. If there exist detectors only at the 215 m
location, it will be able to detect protons of reactions with the mass of the
central system M ≥300 GeV. Therefore the Standard Model Higgs cannot
be measured if there are detectors only at the 215 m location. The mass
acceptance of 120 GeV central system particle will be about 40% when all
three detector locations measure protons and about 35% if the 308 m loca-
tion is missing. The 308 m location allows for overlap in the ξ acceptance,
but the reduction in the mass acceptance for 120 GeV Higgs is only 10% if
the 308 m detector location does not exist.

7.2 Resolution

The effects of resolution issues have been studied with the reconstruction
methods described in Ch. 6. The particle trajectories were smeared at the
IP or at the detector location and then the ξ value was reconstructed with
the reconstruction method, which was derived from unsmeared data. Then
the ξ value, which was reconstructed from the smeared data, was compared
to the true ξ value.
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Figure 7.2: The ξ acceptance for clockwise moving protons with different
detector dead spaces for all the three detector locations. The solid lines cor-
respond to a 0.1 mm dead space, dashed lines correspond to a 0.5 mm dead
space and dotted lines correspond to a 1.0 mm dead space. The approach
is constant (10σ) in each case.
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Figure 7.3: The combined ξ acceptance of all three detector locations. The
solid lines correspond to the 420 m detector locations, the dashed lines cor-
respond to the 308 m detector locations and the dashed lines correspond to
the 215 m detector locations. The upper plot is the acceptance for clock-
wise moving protons while the lower one is the acceptance for anticlockwise
moving protons.
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Figure 7.4: Mass acceptance for different combinations of detector locations.
The solid line is the mass acceptance if there are detectors only at the 215 m
locations. If only the 215 m and the 420 m detector locations exist, the mass
acceptance is shown as the dashed line and the dotted line is the combined
mass acceptance of all three detector locations. In the left lower corner the
mass acceptance is shown for the 420 m location only.
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Table 7.1: The baseline ξ acceptances for all three detector locations.

detector acceptance for acceptance for
location clockwise anticlockwise

moving protons moving protons

215 m 0.022 ≤ ξ ≤0.2 0.020≤ ξ ≤0.2

308/338 m 0.003≤ ξ ≤0.024 0.003≤ ξ ≤0.022

420 m 0.002≤ ξ ≤0.016 0.002≤ ξ ≤0.013

In this Section, for each resolution effect one detector location was chosen
as an example. A simple argument of the size of the effect is given for that
location and simulated results are presented. In Figs. 7.5–7.9, the distribu-
tion and profile plots include the error due to the method. In Figs 7.10–7.12,
the error due to the method is subtracted quadratically.

7.2.1 Detector resolution

The 10 µm detector resolution can change the difference (x430 − x420) by
20 µm. According to the (x430 − x420) vs. x420 plot, a 10 µm change in
the mean coordinate and a 20 µm change in the difference of coordinates
may change ξ by 0.0002 for ξ=0.0025 and by 0.0001 for ξ=0.014. Thus the
estimate for the relative error is 8% for ξ=0.0025 and 0.7% for ξ=0.014.

The effect of the 10 µm detector resolution for reconstructing ξ at the
420 m location is shown in Fig. 7.5. The relative deviation depends on ξ and
it is larger for small ξ values. For ξ=0.002 the relative deviation is about
0.07 and if ξ=0.015 it is a few per mille. The simulated values are consistent
with the estimated ones.

7.2.2 Beam position

The width of the distribution for |ξmax − ξmin| = 5 · 10−4 m at x308 vs.
x338 plot is 2.74 · 10−4 m for ξ=0.006 and 1.5 · 10−4 m for ξ=0.0155. A
5 µm beam position resolution corresponds to a 0.02 and a 0.033 relative
change in the widths of distributions for ξ=0.006 and ξ=0.0155, respectively.
The same relative change corresponds to a 10−5 and an 1.7 · 10−5 absolute
change in the ξ values. Thus the estimate for the relative deviation due to
the 5 µm beam position resolution is 10−5/0.006 ≈ 0.0017 for ξ=0.006 and
1.7 · 10−5/0.0155 ≈ 0.0011 for ξ=0.0155.

The relative deviation due to the 5 µm beam position resolution at the
308 m location is shown in Fig. 7.6. The deviation at the 308 m location
is independent of ξ and the effect of the 5 µm beam position resolution
is roughly 0.4%. The simulated effect of 5 µm beam position resolution



CHAPTER 7. RESULTS 41

Figure 7.5: Relative deviation of the ξ reconstruction due to a 10 µm de-
tector resolution at the 420 m location. The lower plot indicates the central
value and the rms of the upper one.
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includes also the error due to the method itself. Thus the simulated and
estimated sizes and shapes of the errors are consistent with each other.

7.2.3 Transverse beam size

In the accelerator the particles travel in bunches, whose projection in the
(x, y)-plane is an ellipsoid. Thus the particles do not always collide exactly
in the origin of the reference frame.

The magnification at 308 m is about 6 and at 338 m it is about 12.
Using Eq. (3.15), the 16 µm transverse beam size at the IP changes x308

coordinate by 112 µm and x338 coordinate by 240 µm. In the x308 vs. x338

plot such a change in the coordinates will induce a 0.0002 change in ξ values
for both ξ=0.005 and ξ=0.015. Then the estimate for the relative error is
4% and 1.3% for ξ=0.005 and ξ=0.015, respectively.

As an example, the effect of the 16 µm transverse beam size at the 308 m
location can be seen in Fig. 7.7. The spread decreases with increasing ξ. For
ξ=0.005 it is about 4% and for ξ=0.025 it is about 1.5%. The transverse
beam size is one of the dominating effects of the ones which have been
studied. The simulated and estimated sizes and shapes of the errors are
mutually consistent.

7.2.4 Beam divergence

The beam divergence only changes θ∗x. Since the ξ reconstruction is inde-
pendent of θ∗x value, the effect of beam divergence should be negligible.

The effect of the 30 µrad beam divergence at the 215 m location is shown
in Fig. 7.8. The relative deviation is independent of ξ and its magnitude is
about 0.1%. Since the deviation includes also the error due to the method
itself, the effect of beam divergence on the ξ reconstruction is negligible.

7.2.5 Beam energy spread

There is an uncertainty in the beam energy which causes uncertainty in the
ξ. Let us assume that the beam energy is changed from EB to (1 − δ)EB .
Then the relative error of ξ changes as

ξchanged − ξ

ξ
=

(1+δ)EB−Ep

(1+δ)EB
− EB−Ep

EB

EB−Ep

EB

=
δ

1 + δ

(
1 − ξ

ξ

)

≈ δ

ξ
, (7.1)

where Ep is the energy of the leading proton and the last approximation is
valid since δ � 1 and ξ � 1. Then the calculated relative error due to a
10−4 energy spread for ξ=0.003 is 3.3% and for ξ=0.014 is 0.7%.

Figure 7.9 shows the relative error at the 420 m location due to the
energy spread of 10−4. The relative deviation is a decreasing function of ξ
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Figure 7.6: Relative deviation of the ξ reconstruction due to a 5 µm beam
position resolution at the 308 m location. The lower plot indicates the
central value and the rms of the upper one.
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Figure 7.7: Relative deviation of the ξ reconstruction due to a 16 µm trans-
verse beam size at the 308 m location. The lower plot indicates the central
value and the rms of the upper one.
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Figure 7.8: Relative deviation of the ξ reconstruction due to a 30 µrad beam
divergence at the 215 m location. The lower plot indicates the central value
and the rms of the upper one.
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and it is about 3% for ξ=0.003 and less than 1% for ξ=0.014. The size and
shape of the simulated effect correspond the calculated ones.

7.2.6 Total resolution

All the resolution effects studied are combined in Figs. 7.10, 7.11 and 7.12
for the 215 m, 308 m and 420 m locations, respectively. In the figures,
open blue triangles correspond to a 10 µm detector resolution, filled green
circles correspond to a 5 µm beam position resolution, filled red squares
correspond to a 16 µm transverse beam size, open blue squares correspond
to a 30 µrad beam divergence and filled pink triangles correspond to a 10−4

energy spread. Blue filled circles mark the relative deviation when all the
resolution effects studied are taken into account in simulations. Open black
crosses are calculated effect due to all separate resolution effects, i.e.

σcalc =
√

σ2
1 + σ2

2 + σ2
2 + σ2

3 + σ2
4 + σ2

5 , (7.2)

where σn are deviations of detector resolution, beam position resolution,
transverse beam size, beam divergence and energy spread.

The most dominant resolution effects at the 215 m location are the trans-
verse beam size and detector resolution. The deviation due to the transverse
beam size decreases from 1.6% to 0.5% for ξ values from 0.03 to 0.1 and the
deviation due to detector resolution fluctuates between 1–1.5%. The devi-
ations due to beam position smearing, beam divergence and energy spread
are negligible compared to the aforementioned ones.The total resolution due
to all five resolution effect decreases from 2% to 1%.

At the 308 m location, the transverse beam size is the most dominant
effect. The resolution due to it decreases from 3.5% to 1.5% for clockwise
moving protons (0.005 < ξ < 0.026) and from 4% to 2% for anticlockwise
moving protons (0.005 < ξ < 0.022). The second largest resolution is the
energy spread for small ξ values and the detector resolution for large ξ
values. The magnitudes of the second largest resolutions are 1.7% for small
ξ values and 1.2% for large ξ values. The resolutions due to beam position
resolution and beam divergence are small compared to the other three. The
total resolution decreases from 4% to 2–2.5% on the ξ values from 0.005 to
0.026.

Also at the 420 m location the transverse beam size is the most dominant
effect. For ξ=0.003 the deviation due to the transverse beam size is 7%
and for ξ=0.015 it is few per mille for clockwise moving protons and the
corresponding resolutions for anticlockwise moving protons are 12% and few
per mille. For small ξ the second and third largest deviations are caused by
detector resolution and energy spread. For large ξ all the deviations are less
than 1%. The total deviation for clockwise moving protons is about 10%
for ξ=0.003 and few per mille for ξ=0.014. The corresponding numbers for
anticlockwise moving protons are 15% and few per mille.
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Figure 7.9: Relative deviation of the ξ reconstruction due to a 10−4 energy
spread at the 420 m location. The lower plot indicates the central value and
the rms of the upper one.
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Figure 7.10: Summary of all the studied resolution effects at the 215 m
location. The upper plot is for clockwise moving protons and the lower one
for anticlockwise moving protons.
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Figure 7.11: Summary of the all studied resolution effects at the 308 m
location. The upper plot is for clockwise moving protons and the lower one
for anticlockwise moving protons.
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Figure 7.12: Summary of all the studied resolution effects at the 420 m
location. The upper plot is for clockwise moving protons and the lower one
for anticlockwise moving protons.
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7.3 Systematic shifts

The systematic shifts on the measured coordinates at the detector location
were studied in a way similar to the resolution effects.

7.3.1 Beam position

A beam position offset does not change the value of (x225 − x215) ∼ θx,215,
only x215 is changed by e.g. 10 µm. In the (x225 − x215) vs. x215 plot, a
10 µm change in x215 coordinate corresponds to a 0.0001 change in the ξ
values for both ξ=0.03 and ξ=0.1. Thus the estimated magnitude of the
shift in the relative error is 0.3% for ξ=0.03 and 0.1% for ξ=0.1.

The effect of a 10 µm systematic shift of the absolute beam position at
the 215 m location is shown in Fig. 7.13. The average of relative error is
negative and the absolute value of the relative error decreases as a function
of ξ. For ξ=0.03 the average of the relative error is –0.3% and for ξ=0.1 it
is about –0.1%.

7.3.2 Detector misalignment

Since the other measured coordinate at the 420 m location is θx ∼ (x430 −
x420), the estimate for the error can be easily calculated with Fig. 6.1. For
ξ=0.002 the difference (x430−x420) is about 5 ·10−4 m. A 10 µm systematic
shift correspond to a 2% shift in the angle and can be straightforwardly
approximated to be a 2% shift in the average of the relative error. For
ξ=0.015 the estimate for systematic shift in the relative error is 0.25%.

The effect of a –10 µm systematic shift due to the detector misalignment
for the 420 m location is shown in Fig. 7.14. The average of the relative
error is negative and its magnitude strongly depends on ξ. For ξ=0.002 the
shift of the relative error is about –4% and for ξ=0.015 it is few per mille.
The simulated size and shape of the shift in the relative error are consistent
with the estimated ones.

7.3.3 Comparison of the two systematic shifts

All the systematic shifts studied are combined in Figs. 7.15, 7.16 and 7.17
for the detector locations at 215 m, 308 m and 420 m, respectively. Filled
pink triangles mark the average of relative shift for beam position offset and
open red circles mark the average of relative shift for detector alignment.

Detector misalignment is the dominant effect of the two systematic shifts
at the 215 m location. In the detector misalignment only the coordinates
the measured at the second station are shifted. Since the values of measured
coordinates at the 215 m location are order of 10−3 m and the difference
between two measured coordinates are order of 10−4 m, the relative change
of 10 µm is larger for the difference of coordinates. The average of relative
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Figure 7.13: Relative error of the ξ reconstruction due to a 10 µm beam
offset at the 215 m location. The lower plot indicates the central value and
the rms of the upper one.
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Figure 7.14: Relative error of the ξ reconstruction due to a –10 µm detector
alignment at the 420 m location. The lower plot indicates the central value
and the rms of the upper one.



CHAPTER 7. RESULTS 54

error due to a –10 µm detector misalignment is negative and the magnitude
is about 0.6–0.8%. The magnitude of relative shift due to detector misalign-
ment is roughly the same as the total resolution for ξ=0.1 and it is about
1/2 for ξ=0.03.

At the 308 m location, the beam position offset is the leading systematic
shift and the average of relative error due to it increases from 0.6% to 0.8%
in the range of acceptance. For ξ=0.005 the fraction of the systematic shift
to the total resolution is about 1/4 and for ξ=0.025 it is about 1/2.

Because of the same reason as for the 215 m location, the detector mis-
alignment is the dominant systematic shift at the 420 m location. For clock-
wise moving protons, the average of the relative error due to a –10 µm
detector misalignment is about –3.5% for ξ=0.003 and minus few per mille
for ξ=0.014. The corresponding numbers for anticlockwise moving protons
are about 7% and minus few per mille. The magnitude of the relative shift is
about 2/5 of the total resolution for ξ=0.003 and it is about 1/3 for ξ=0.01.

A procedure for performing the detector alignment and minimization of
the systematic beam position shift needs to be developed.

7.4 Mass resolution

The reconstructed mass of the central system can be calculated with the
missing mass method, see formula (2.25), from the reconstructed ξ values.
The calculated ξ values were chosen in such a way that if the ξ value of the
event is in the acceptance of the 420 m detector, ξcalc was calculated with the
420 m method from the measured coordinates at the 420 m location. The
308 m location was used for ξcalc if the simulated ξ was in the acceptance of
the 308 m location but not in the acceptance of the 420 m location. Finally,
the measurement at the 215 m location was used for events which cannot
be detected at the 420 m and 308 m detector locations.

The relative error

M − Mcalc

M
(7.3)

due to the ξ reconstruction methods is shown in the upper plot in Fig. 7.18.
The relative spread is independent of mass M and the magnitude of the
relative error is about 0.1%. The mean value of the distribution is 0. Thus
the mass reconstruction works with high accuracy. The effect of all the
five resolution effects is shown in the lower plot in Fig. 7.18. The spread
decreases for increasing M and it is about 3.5% for small masses and about
1.5% for M=800 GeV.

In contrast to the previous plots, the mass resolution for each bin was
calculated using a Gaussian fit instead of RMS. It is shown in Fig. 7.19.
Filled black circles mark the resolution when all detectors exist. Calculated
ξ values were chosen as described above. Open red squares correspond to
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Figure 7.15: Summary of all the studied offsets at the 215 m location. The
upper plot is for clockwise moving protons and the lower one for anticlock-
wise moving protons.
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Figure 7.16: Summary of all the studied offsets at the 308 m location. The
upper plot is for clockwise moving protons and the lower one for anticlock-
wise moving protons.
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Figure 7.17: Summary of all the studied offsets at the 420 m location. The
upper plot is for clockwise moving protons and the lower one for anticlock-
wise moving protons.
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the total mass resolution for the 215 m location alone, filled green triangles
correspond to the total mass resolution for the 308 m location alone and
open blue crosses mark the total mass resolution for the 420 m location
alone.

For large masses M ≥500 GeV, the total mass resolution is the same for
all detector locations and the 215 m location alone. For small masses the best
mass resolution is achieved with the 308 m location alone for M ≤110 GeV
and with the 420 m location alone for M ≥110 GeV. However, the masses
M ≤60 GeV cannot be detected at the 308 m location alone and the masses
M ≥200 GeV cannot be detected at the 420 m location alone.

The mass resolution decreases for increasing mass. With all detector lo-
cations the mass resolution is about 4% for M=60 GeV, 2% for M=120 GeV
and 1% for M ≥400 GeV. The mass reconstruction is more accurate with
only one detector location for small masses, but the acceptance is less if only
one detector location exists. The mass acceptance for small masses is shown
in Fig. 7.20. In a case when the proton is seen in more than one station,
the mass acceptance may be improved further by properly combining the
measurements.

The reconstruction methods used in this thesis do not cover the whole ξ
acceptance at all detector locations. At the 215 m location the ξ value was
reconstructed for protons with ξ ≥0.03. At the 308 m location the lowest
reconstructed ξ value was 0.005. Otherwise the ξ values were reconstructed
in the range of acceptance at each detector location. The mass acceptance
according to the reconstruction methods used is shown in Fig. 7.21.
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Figure 7.18: Mass reconstruction accuracy due to the ξ reconstruction
method in the upper plot and expected mass resolution in the lower plot.
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Figure 7.19: Combined mass resolution of all detector locations and mass
resolution for each location separately.
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Figure 7.20: Mass acceptance for small masses.
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Figure 7.21: Mass acceptance according to the available reconstruction
methods. The solid line is the mass acceptance of the reconstruction meth-
ods at the 215 m locations, the dashed line is the combined mass acceptance
of the reconstruction methods at the 215 m and 420 m locations and the dot-
ted line is the combined mass acceptance of all the reconstruction methods.
The dashed-dotted line corresponds to ideal acceptance of all the stations.
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Conclusions

The aim of this thesis was to study the mass resolution of the central system
in exclusive double Pomeron exchange (pp → p + X + p) via the leading
proton measurement. This centrally produced X could be the Higgs boson,
and it has been proposed that via leading proton measurement, the mass
can be measured to an accuracy of O(1 GeV) per event, whereas the direct
measurement of the Higgs mass via its decay products in H → bb̄ results in
a mass resolution of only about O(10 GeV) per event.

The trajectories of the leading protons have to be detected far away from
the interaction point. We selected the detector locations to be at 215 m,
308 m and 420 m from the interaction point. At the 215 m and 420 m
locations, the measured coordinates were the x displacement and the polar
angle component θx. At the 308 m location the two measurements were the
x displacements at 308 m and 338 m from the interaction point.

The ξ acceptance was covered between ξ=0.002–0.1 with these three
detector locations. The difference in the combined mass acceptance of all
the three detector locations compared to the combined mass acceptance of
the 215 m and 420 m detector locations together was about 10% for the
central system of mass MX=120 GeV. The masses measured with better
than 50% acceptance, were 140 GeV for the combined mass acceptance of
all three detector locations, 170 GeV for combined mass acceptance of the
215 m and 420 m locations, and 620 GeV for the 215 m location alone.

The accuracy of the momentum reconstruction suffers from different res-
olution effects and systematic shifts. The resolution effects studied were
detector resolution (10 µm), beam position resolution (5 µm), transverse
beam size (16 µm), beam divergence (30 µrad) and energy spread (10−4).
The transverse beam size had the dominant effect on reconstruction accu-
racy and, at the 215 m and 420 m locations, the detector resolution also
had a significant effect, as well as the energy spread for smallest ξ values.
The beam position resolution and beam divergence had negligible effect on
reconstruction accuracy compared to the aforementioned ones. The total
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resolution due to all the resolution effects studied decreased for increasing
ξ. For example, the total resolution was about 10% for ξ=0.002, 2% for
ξ=0.02 and 1% for ξ=0.1.

The systematic shifts studied were detector offset (-10 µm) and beam
position offset (10 µm). At the 215 m and 420 m locations, the detector
offset caused a larger shift in the reconstructed values and at the 308 m
location, the beam position offset was the dominant one. For the largest ξ
values at the 215 m location the relative shift and the total resolution were
both about 1%. For smaller ξ values the relative shift in reconstruction is
about 1/4–1/2 of the magnitude of total resolution.

The mass resolution was studied using the missing mass method to cal-
culate the reconstructed mass from the calculated ξ values. The total mass
resolution decreases with increasing mass. With all detector locations the
mass resolution is about 4% for M=60 GeV, 2% for M=120 GeV and 1% for
M ≥400 GeV. The mass resolution at small masses can be improved when
only one detector location is chosen. However, the acceptance decreases if
only one detector location is used.

In the future, the more realistic aperture of the beam pipe should be
implemented. However, it will only affect the ξ acceptance for largest ξ
values. The ξ reconstruction methods have to be refined to cover the full
ξ range, and one could use a two-dimensional grid with linear interpolation
for ξ reconstruction at all detector locations and compare results.

The inaccuracy in the alignment of the magnetic elements and the vari-
ations of magnetic field strength with respect to nominal values will affect
in ξ reconstruction and thus they should be studied. It may also be worth
studying reconstruction of θ∗x and θ∗y, and how the inaccuracies affect θ∗x,y

reconstructions.
This study was performed with the LHC optics. The LHC is planned to

be ready in 2007, and it should be able to detect the Higgs boson and su-
persymmetric particles, if they exist. Double Pomeron exchange via leading
proton measurement provides a clean signature for finding them.
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Appendix A

Parameters of momentum
reconstruction

The parameters for momentum reconstruction methods are given here. Ta-
ble A.1 contains the constants cn from surface 6.2 for clockwise moving
protons and Table A.2 contains the constants cn for anticlockwise moving
protons. The parameters an for surface 6.4 are given in Tables A.3 and A.4
for clockwise and anticlockwise moving protons, respectively.

Table A.1: Surface constants for the fitted surface at 308 m for clockwise
moving protons.

c1 c2 c3 c4 c5 c6

0.005≤ ξ ≤0.015 -0.245 -0.213 -0.245 -0.229 -119.5 -0.000207
0.015≤ ξ ≤0.026 -1.332 -0.216 -1.325 -0.231 -167.7 -0.000360

Table A.2: Surface constants for the fitted surface at 308 m for anticlockwise
moving protons.

c1 c2 c3 c4 c5 c6

0.005≤ ξ ≤0.015 -1.145 -0.159 -1.145 -0.172 -180.3 0.000563
0.015≤ ξ ≤0.022 -5.747 -0.0404 -5.732 -0.0608 -242.7 0.0132
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Table A.3: Surface constants for the fitted surface at 420 m for clockwise
moving protons.

a1 a2 a3 a4 a5

y′

a6 a7 a8 a9 a10

[−60,−30] -1.31·10−5 2.13·10−9 1.21·10−6 9.99·10−8 2.30·10−6

4.38·10−7 -1.16·10−5 -5.99·10−4 -4.15·10−5 1.14·10−3

[−130,−60] -4.68·10−6 2.34·10−10 -1.57·10−8 -2.50·10−8 1.04·10−5

1.15·10−7 -6.95·10−6 -5.43·10−4 -5.73·10−5 9.38·10−4

[−250,−130] -4.95·10−7 2.84·10−11 -4.32·10−8 -1.80·10−9 -1.03·10−5

4.07·10−8 -1.44·10−6 -2.01·10−4 -6.54·10−5 7.17·10−4

Table A.4: Surface constants for the fitted surface at 420 m for anticlockwise
moving protons.

a1 a2 a3 a4 a5

y′

a6 a7 a8 a9 a10

[−60,−30] -4.73·10−6 6.48·10−9 -1.07·10−6 -2.56·10−7 -7.77·10−5

9.63·10−7 -2.47·10−5 -7.41·10−4 -6.95·10−6 1.03·10−3

[−130,−60] -1.10·10−6 -2.16·10−10 -8.54·10−7 -6.99·10−8 -1.10·10−4

4.11·10−8 -1.59·10−5 -1.07·10−3 -4.03·10−5 1.58·10−3
[−230,−130] 4.02·10−7 1.24·10−11 -2.87·10−8 -5.94·10−8 -1.13·10−5

2.21·10−8 -3.06·10−6 -4.52·10−4 -5.27·10−5 7.82·10−4



Appendix B

Distributions of leading
protons at 215 m and 308 m

The distribution of the leading protons measured at the 308 m and 338 m
stations is shown in Fig. B.1. In the upper plot each colour corresponds to a
ξ range |ξmax−ξmin|=10−3 and in the lower plot each colour corresponds to a
θ∗x range |θ∗x,max−θ∗x,min|=28 µrad. The smallest ξ values lie on the top right
corner of the distribution while the largest ξ values lie on the bottom left
corner of the distribution. The same distribution in transformed coordinates
is shown in Fig. B.2.

Figure B.3 displays the distribution of leading protons measured at 215 m
and 225 m stations. In the upper plot each colour corresponds to a ξ range
|ξmax − ξmin|=5·10−3 and in the lower plot each colour corresponds to a θ∗

x

range |θ∗x,max − θ∗x,min|=28 µrad. Smallest ξ values are on the left of distri-
bution. Figure B.4 shows the same distribution in transformed coordinates.

As can be seen in the aforementioned figures, different ξ values are well
separated independently on θ∗x and vice versa. In other words certain pair of
measured observables correspond to a certain ξ value as well as a certain θ∗

x

value. Thus ξ and θ∗x can be reconstructed from two measured observables
independently of each other.
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Figure B.1: Distribution of protons measured at the 308 m location. In
the upper plot each colour corresponds to a ξ range of |ξmax − ξmin|=10−3

while in the lower plot each colour corresponds to a θ∗
x range of |θ∗x,max −

θ∗x,min|=28 µrad.
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Figure B.2: Distribution of protons measured at the 308 m location after the
coordinate transformation. In the upper plot each colour corresponds to a ξ
range of |ξmax − ξmin|=5·10−4 and in the lower plot each colour corresponds
to a θ∗x range of |θ∗x,max − θ∗x,min|=28 µrad.


