International Collaboration

Chris Llewellyn Smith

Director of Energy Research Oxford University
President SESAME Council

Chair Advisory Group for the Royal Society Report

Knowledge Nations and Networks: Global scientific collaboration in the 21st century, on which much of this talk is based

http://royalsociety.org/knowledge-networks-nations

For a summary of highlights see C Llewellyn Smith, The Academic Executive Brief, Vol. 1, p 2, 2011

Near SLAC, Summer 1972

International Collaboration

Chris Llewellyn Smith

Director of Energy Research Oxford University
President SESAME Council

Chair Advisory Group for the Royal Society Report

Knowledge Nations and Networks: Global scientific collaboration in the 21st century, on which much of this talk is based

http://royalsociety.org/knowledge-networks-nations

For a summary of highlights see C Llewellyn Smith, The Academic Executive Brief, Vol. 1, p 2, 2011

The Changing Scientific Landscape

- 2002-07: Funding + 45% (+ 100% in developing countries) Researchers and publications + 25%
- Rise of new powers: China, Brazil, India, Korea,... + science taking off in many other countries
- WWW + reduced travel costs → increased international collaboration
 (1996: 25% of papers had international collaborators → 35% in 2008)
 driven by search for quality and efficiency, and by necessity
- Closure of central corporate labs + increasing need for multidisciplinary approaches →
 - outsourcing of research by industry to universities (wherever the best researchers can be found)
 - multi-nationals setting up research labs close to markets (Microsoft has 4 in USA + one each in: UK, Germany, China, Egypt)

Will elaborate some of these points before discussing harnessing science to address global problems

Who, what, where?

2004-2008

Science taking off in many other countries:

Funding: Turkey x 6 1995-07 (to 0.72% of gpd), Tunisia: 0.013% of gpd in 1996 \rightarrow 1.25% 2009, Singapore 1.37% (1996) \rightarrow 2.61% (2009), big investments in the Gulf

Iran: 736 papers 1996 \rightarrow 13,238 2008. Leaders acknowledging importance of science in Africa.

Publications per million inhabitants 1998 and 2008

Who, what, where?

2004-2008

Science taking off in many other countries:

Funding: Turkey x 6 1995-07 (to 0.72% of gpd), Tunisia: 0.013% of gpd in 1996 \rightarrow 1.25% 2009, Singapore 1.37% (1996) \rightarrow 2.61% (2009), big investments in the Gulf

Iran: 736 papers 1996 \rightarrow 13,238 2008. Leaders acknowledging importance of science in Africa.

Publications 2000 - 2015?

R&D Spend 2000 -2015

Who, what, where?

Citation trends

2004-2008

Patents registered in USA

1989		1999		2009	
Japan	20,169	Japan	31,104	Japan	35,501
Germany	8,352	Germany	9,337	Germany	9,000
France	3,140	France	3,820	South Korea	8,762
UK	3,100	Chinese Taipei	3,693	Chinese Taipei	6,642
Canada	1,960	UK	3,578	Spain	8,472
Switzerland	1,362	South Korea	3,562	Canada	3,855
Italy	1,297	Canada	3,228	UK	3,175
Netherlands	1,061	Italy	1,492	France	3,140
Sweden	837	Sweden	1,401	China	1,855
Chinese Taipei	591	Switzerland	1,279	Israel	1,404
Australia	501	Netherlands	1,247	Italy	1,346
USA	50,184	USA	83,905	USA	82,382
Global total	95,537	Global total	153,485	Global total	167,349

Source: US Trademark and Patent Office

International collaboration

 Over 35% of articles published in international journals are internationally collaborative, up from 25% 15 years ago

Search for

quality → best collaborators & facilities, complementary skills

efficiency → LHC, human genome,...

and by necessity → data on biodiversity, effects of climate change

Importance of Collaboration 1996-2007

Regional collaboration

is growing, but for developing countries global collaboration dominates

Regional collaboration

Intra-European collaboration has (exceptionally) grown faster than international collaboration in general – as a result of deliberate EU policy

International collaboration

Benefits of joint authorship

Global Approaches to Global Problems

- Problems with global impacts (climate change, global health, food security, bio-diversity, water security, energy security...) need global approaches
- **Science crucial:** measure and predict impacts, identify solutions, evaluate pathways for adaptation and mitigation
- How can governments, scientists, NGOs, industry, ...
 best address these issues, combining scientific, social,
 political and economic perspectives?

Global challenges

Global challenges have been successfully tackled before

Hole in ozone layer

Smallpox

Science clear, threats easy to grasp, solutions simple, no losers

Approaching today's global problems

Many very complex + solutions not clear cut & expensive

- Many players: scientists, government, industry, NGOs, philanthropy
- Many different forms of partnership
- Various bodies with relevant mandates: UNESCO, UN-CBTD, ICSU, COST
- Various global and regional initiatives not necessarily optimised to address the global problems of the 21st century

Global challenges

Five detailed case studies

Three Steps

Identification of the challenge/solution

- Blue skies research crucial (cf Arrhenius prediction of climate change, ozone hole)
- How to attract attention of policymakers/funders? Governments, industry, philanthropy?

Identification of suitable forum to prepare implementation

Use what exists – if appropriate

Implementation

- Governance: simple, transparent conflict with buy-in?
- Reconcile different interests
- Capacity building, engagement

Desiderata and Issues

- As many countries as possible should participate in devising and assessing solutions
 - necessary for buy-in to implementation, but tension between inclusivity and quality of science
 - → capacity building crucial
- Possible tension between coordination and encouraging local initiative & maintaining buy-in
- Major philanthropic input very welcome (fast, flexible) but accountability?
- Time needed to set up global organisations has to be balanced against the advantages
- Possible tension between technical, political and industrial interests
- Intellectual property issues may be a barrier

'Science for Peace'

Two organisations created under the umbrella of UNESCO:

CERN

Conceived late 1940s - two aims:

- Enable construction of a facility beyond means of individual members
- Foster cooperation between peoples recently in conflict

SESAME

Conceived late 1990s with the same aims

- Members: Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey
 'A parallel universe'
- Hope commissioning 2015
 It will work politically provided science is first class

http://mag.digitalpc.co.uk/fvx/iop/esrf/sesamebrochure/http://mag.digitalpc.co.uk/fvx/iop/esrf/sesamepeople/http://www.sesame.org.jo/pdf/Press_Release_Final.pdf

SOME CONCLUSIONS & NEXT STEPS

- The scientific landscape is changing dramatically, with new powers rising
- Global scientific collaboration is generally win-win and should be fostered
- Combing forces to find solutions to global problems is desirable per-se and necessary to endure that actions are accepted by all, but it is not straightforward
- We need better metrics this is being pursued by UNESCO (with collaboration of the Royal Society)
- The OECD* is taking forward analysis of global collaborations, especially issues (with input from the Royal Society)

^{*} Oslo Workshop on International Co-operation in Science Technology and Innovation to Address Global Challenges – 18-20 May 2011