John, and Beyond Known Physics at the LHC

Colloquium to mark the 65th birthday of John Ellis 13th September 2011 Roadmap for Discoveries (Part 2 of a common account on LHC, together with Peter Jenni)

A Theorist

Image a la Sergio da Vittorio Veneto

Think of things for the experiments to look for, and hope they find something different

J. Ellis

Tejinder S. Virdee, Imperial College

J. Ellis Colloquium-tsv

1

Physics Focus of Attention in Early 1990's

1. Clarify the electroweak symmetry breaking sector! How is mass generated?

SM has an unproven element: the generation of mass

Higgs mechanism ? or other physics ?

Answer will be found at LHC energies

2. Identify particles that make up Dark Matter

Even if the Higgs exists, all is not completely well with SM alone: next question is "why is (Higgs) mass so low"? *If a new symmetry (Supersymmetry) is the answer, it must show up at O*(**1TeV)**

3. Search for new physics at the TeV scale

SM is logically incomplete – does not incorporate gravity Superstring theory ⇒ dramatic concepts: supersymmetry, (extra space-time dimensions) ?

Clarify the Electroweak Symmetry Breaking Sector

Clarify the Electroweak Symmetry Breaking Sector

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

At the time of writing, the discovery of charm has not been confirmed, but gauge theorists are not yet discouraged.

Seminal Events just before the above paper:

Neutral currents (1973) Charm (1974) Heavy lepton τ (1975) Much attention to search for W[±], Z⁰

For these authors, the Big Issue: is there a Higgs boson?

Previously ~ 10 papers on Higgs bosons $M_H > 18 \text{ MeV}$ This paper presented the first attempt at a systematic survey

J. Ellis Colloquium-tsv

A Phenomenological Profile of the Higgs Boson

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

A Phenomenological Profile of the Higgs Boson

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

A Key Element that Drove LHC-GPD Designs

Radiative corrections to the masses of supersymmetric Higgs bosons

John Ellis^a, Giovanni Ridolfi^b and Fabio Zwirner^{a,1}

* Theory Division, CERN, CH-1211 Geneva 23, Switzerland

^b INFN, Sezione di Genova, I-16146 Genoa, Italy

Received 21 December 1990

The lightest neutral Higgs boson in the minimal supersymmetric extension of the standard model has a tree-level mass less than that of the Z⁰. We calculate radiative corrections to its mass and to that of the heavier *CP*-even neutral Higgs boson. We find large corrections that increase with the top quark and squark masses, and vary with the ratio of vacuum expectation values v_2/v_1 . These radiative corrections can be as large as O(100) GeV, and have the effect of (i) invalidating lower bounds on v_2/v_1 inferred from unsuccessful Higgs searches at LEP I, (ii) in many cases, increasing the mass of the lighter *CP*-even Higgs boson beyond m_2 , (iii) often, increasing the mass of the heavier *CP*-even Higgs boson beyond the LEP reach, into a range more accessible to the LHC or SSC.

and hopefully detected at LEP. If such a standardmodel-like Higgs boson had a mass significantly above the Z⁰ mass, it would be outside the LEP discovery range. However, it could be detected at a high energy hadron-hadron collider, such as the LHC or SSC, although the mass region between 90 and 120 GeV appears to pose a non-trivial experimental challenge. It

+ a few others

Imperial College

London

Physics Benchmark For Detector Design Production of SM Higgs Boson

A Collision of Two Protons

CMS Performance: Tracking and Muons

Imperial College London

Search for the SM $H \rightarrow \gamma \gamma$

CMS: Search for the SM H \rightarrow WW \rightarrow II_{VV}

ATLAS: Search for the SM $H \rightarrow WW \rightarrow II_{VV}$

Search for the SM H \rightarrow ZZ \rightarrow 4I

ATLAS: Search for the SM H Boson

How the individual channels contribute

Search for the SM Higgs Boson

CMS Combination: Search for the SM H Boson

Seeking Supersymmetry

J. Ellis Colloquium-tsv

Image a la Sergio da Vittorio Veneto ¹⁸

Search for Physics Beyond the SM

PROCEEDINGS OF THE WORKSHOP ON PHYSICS AT FUTURE ACCELERATORS

La Thuile 7-13 January 1987

CERN 87-07 Vol. I 4 June 1987

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

PROCEEDINGS OF THE WORKSHOP ON PHYSICS AT FUTURE ACCELERATORS

La Thuile (Italy) and Geneva (Switzerland) 7 - 13 January 1987

BEYOND THE STANDARD MODEL

SUMMARY REPORT OF THE PHYSICS-2 WORKING GROUP

V. Angelopoulos, P. Bagnaia, G. Barbiellini, R. Batley, D. Bloch, A. Blondel, W. Buchmüller, G. Burgers,
R. Cashmore, P. Chiappetta, F. Cornet, C. Dionisi, M. Dittmar, J. Ellis, J.-Ph. Guillet, N. Harnew,
P. Igo-Kemenes, R. Kleiss, H. Komatsu, H. Kowalski, B. Mansoulié, P. Méry, A. Nandi, F. Pauss, M. Perrottet,
F. Renard, R. Rückl, A. Savoy-Navatro, D. Schaile, D. Schlatter, B. Schrempp, F. Schrempp, K. Schwarzer,
N. Tracas, D. Treille, N. Wermes, D. Wyler, N. Zaganidis, P. Zerwas and F. Zwirner

Presented by J. Ellis and F. Pauss

CERN, Geneva, Switzerland

Search for Physics Beyond the SM

Supersymmetry

The main conclusions of this analysis are as follows:

- 1) The Tevatron will be able to reach $m_{\tilde{q}}, m_{\tilde{g}} \approx 100 \text{ GeV}$ when it achieves $\int Ldt = 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$, and $m_{\tilde{q}} \approx 350 \text{ GeV}, m_{\tilde{g}} \approx 200 \text{ GeV}$ if it achieves $\int Ldt = 10^{39} \text{ cm}^{-2} \text{ s}^{-1}$.
- 2) The LHC overlaps with the Tevatron for squarks and gluinos with masses between 200 and 400 GeV.
- 3) The rate at the LHC with 10 fb⁻¹ varies from about 2×10^7 events for $m_{\tilde{q}} \approx m_{\tilde{g}} \approx 300$ GeV, compared with about 3×10^8 QCD background events, to about 2×10^4 events for $m_{\tilde{q}} \approx m_{\tilde{g}} \approx 1$ TeV, compared with about 2×10^7 QCD background events. After applying the proposed cuts, the signal-to-background ratio falls from 50 to 90 in the low-mass case, through about 10 to 20 when $m_{\tilde{q}} \approx m_{\tilde{g}} \approx 500$ GeV, to about 1 when $m_{\tilde{q}} \approx m_{\tilde{g}} \approx 1$ TeV. A bound of about 1 TeV seems to be attainable at the LHC with effort.
- 4) The SSC could reach out to sparticle masses ≈ 1.5 TeV.

Relics from Ancient Times

SUPERSYMMETRIC RELICS FROM THE BIG BANG*

John ELLIS and J. S. HAGELIN

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA

D. V. NANOPOULOS, K. OLIVE[†], and M. SREDNICKI[‡]

CERN, CH-1211 Geneva 23, Switzerland

Received 16 September 1983 (Revised 15 December 1983)

In this paper we have made a systematic and complete study of the cosmological constraints on supersymmetric theories extending the analysis of ref. [23] and updating ref. [6]. Our analysis is tailored preferentially, but not exclusively, to

Where necessary, we have supplemented strictly cosmological constraints by clearly stated phenomenological assumptions. We have found that the lightest supersymmetric particle (LSP) is unlikely to be a charged wino, charged higgsino, slepton, sneutrino, gluino, squark, or gravitino. Most probably the LSP is a mixture of neutral gauge and Higgs fermions. We have explored the cosmologically allowed domains of parameter space for these particles, and our results are shown in figs. 4

Supersymmetry: a New Zoology of Particles?

J. Ellis Colloquium-tsv

CMS: Early Search for Supersymmetry – an Example

- •No direct dependence on calorimetric MET
- Originally proposed for di-jets but now generalized for Njets
- Perfectly balanced events (QCD) have $a_T = 0.5$ (cut at $a_T > 0.5$)
- Due to built-in correlation a_T is very robust against jet mis-measurements

 $\alpha_{T} \text{ for 2}_{jets:} \quad \alpha_{T} = \frac{E_{T2}}{M_{T}} \le 0.5$ $\alpha_{T} \text{ for n}_{jets:} \quad \alpha_{T} = \frac{1}{2} \frac{H_{T} - \Delta H_{T}}{M_{T}}$ Expectation for QCD: $\alpha_{T} = 0.5$ Jet mismeasurements: $\alpha_{T} < 0.5$ (form two pseudo-jets – defined by balance in "pseudo-jet" $H_{T} = \Sigma E_{T}$)
Spill-over in $a_{T} > 0.5$ from:
(a)Processes with genuine MET (EWK, TOP, and SUSY ③)
(b)Some remnant QCD

CMS:Search for Supersymmetry - Update

Imperial College

H_T>350 GeV, 2 Leading jets E_T >100GeV ($|\eta|$ <2.5) Other jets E_T >50 GeV ($|\eta|$ <3

Summary of CMS Results on SUSY

Summary of ATLAS Results on SUSY

Another View of ATLAS Results on SUSY

ATLAS Searches* - 95% CL Lower Limits (Lepton-Photon 2011) ATLAS MSUGRA/CMSSM : 0-lep + ET.miss L=1.04 fb⁻¹ (2011) [Preliminary] q̃ = q̃ mass 980 GeV Preliminary Simplified model (light $\tilde{\chi}_{4}^{0}$) : 0-lep + $E_{T,miss}$ L=1.04 fb⁻¹ (2011) [Preliminary] 1.075 TeV q = g mass $Ldt = (0.034 - 1.04) \, \text{fb}^{-1}$ √s = 7 TeV Simplified model (light $\tilde{\chi}_{4}^{0}$) : 0-lep + $E_{T,miss}$ L=1.04 fb⁻¹ (2011) [Preliminary] ã mass 850 GeV Simplified model (light $\tilde{\chi}_{a}^{0}$): 0-lep + $E_{T,\text{miss}}$ L=1.04 (b⁻¹ (2011) [Preliminary] 800 GeV ĝ mass Simpl. mod. (light $\tilde{\chi}_{4}^{0}$) : 0-lep + b-jets + $E_{T,miss}$ 720 GeV \tilde{g} mass (for $m(\tilde{b}) < 600$ GeV) / =0.83 fb⁻¹ (2011) [ATLAS-CONE-2011-098 Simpl. mod. ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}^0$) : 1-lep + b-jets + $E_{T,miss}$ \tilde{q} mass (for $m(\tilde{\chi}_{+}^{0}) < 80$ GeV) L=1.03 fb⁻¹ (2011) [Preliminary] 540 GeV Pheno-MSSM (light $\tilde{\chi}^{0}_{A}$) : 2-lep SS + $E_{T.miss}$ ã mass 690 Ge Pheno-MSSM (light $\tilde{\chi}_{4}^{0}$) : 2-lep OS_{SE} + $E_{T,miss}$ L=35 pb⁻¹ (2010) [arXiv:1103.6208 558 GeV q mass GMSB (GGM) + Simpl. model : $\gamma\gamma$ + $E_{_{T,miss}}$ =36 pb⁻¹ (2010) [arXiv:1107.0561] 560 GeV ã mass 136 Ge³ GMSB : stable $\tilde{\tau}$ =37 pb⁻¹ (2010) [arXiv:1106.4495] ₹ mass Stable massive particles : R-hadrons =34 pb⁻¹ (2010) [arXiv:1103.1984] 562 GeV ã mass Stable massive particles : R-hadrons =34 pb⁻¹ (2010) [arXiv:1103.1984] 294 GeV b mass Stable massive particles : R-hadrons =34 pb⁻¹ (2010) [arXiv:1103.1984] 309 Ge t mass RPV (λ'₃₁₁=0.01, λ₃₁₂=0.01) : high-mass eμ =0.87 fb⁻¹ (2011) [Preliminary] 440 GeV v. mass 10⁻¹ 10 1

Imperial College

Labeling Penguins: $B \rightarrow \mu \mu$

Supersymmetry in Light of 1/fb of LHC Data

O. Buchmueller^a, R. Cavanaugh^{b,c}, A. De Roeck^{d,e}, M.J. Dolan^f, J.R. Ellis^{g,d}, H. Flächer^h, S. Heinemeyerⁱ, G. Isidori^j, D. Martínez Santos^d, K.A. Olive^k, S. Rogerson^a, F.J. Ronga^l, G. Weiglein^m

^aHigh Energy Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK

^bFermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA

^cPhysics Department, University of Illinois at Chicago, Chicago, Illinois 60607-7059, USA

^dCERN, CH-1211 Genève 23, Switzerland

^eAntwerp University, B-2610 Wilrijk, Belgium

^fInstitute for Particle Physics Phenomenology, University of Durham, South Road, Durham DH1 3LE, UK

^g Theoretical Physics and Cosmology Group, Department of Physics, King's College London, London, UK WC2R 2LS, UK

^hDepartment of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA; From Oct. 1, 2011: H.H. Wills Physics Lab., University of Bristol, Tyndall Ave., Bristol BS8 1TL, UK

ⁱInstituto de Física de Cantabria (CSIC-UC), E-39005 Santander, Spain

^jINFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, I–00044 Frascati, Italy

^k William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

¹Institute for Particle Physics, ETH Zürich, CH-8093 Zürich, Switzerland

^mDESY, Notkestrasse 85, D-22607 Hamburg, Germany

Global Fits: Putting it all together

Observable	Source	Constraint
	Th./Ex.	
m_t [GeV]	[42]	173.2 ± 0.90
$\Delta \alpha_{had}^{(5)}(m_Z)$	[41]	0.02749 ± 0.00010
M_Z [GeV]	[43]	91.1875 ± 0.0021
Γ_Z [GeV]	[26] / [43]	$2.4952 \pm 0.0023 \pm 0.001_{\rm SUSY}$
$\sigma_{\rm had}^0$ [nb]	[26] / [43]	41.540 ± 0.037
R _l	[26] / [43]	20.767 ± 0.025
$A_{\rm fb}(\ell)$	[26] / [43]	0.01714 ± 0.00095
$A_{\ell}(P_{\tau})$	[26] / [43]	0.1465 ± 0.0032
$R_{\rm b}$	[26] / [43]	0.21629 ± 0.00066
Rc	[26] / [43]	0.1721 ± 0.0030
$A_{\rm fb}(b)$	[26] / [43]	0.0992 ± 0.0016
$A_{\rm fb}(c)$	[26] / [43]	0.0707 ± 0.0035
A_b	[26] / [43]	0.923 ± 0.020
Ac	[26] / [43]	0.670 ± 0.027
$A_{\ell}(SLD)$	[26] / [43]	0.1513 ± 0.0021
$\sin^2 \theta_w^{\ell}(Q_{fb})$	[26] / [43]	0.2324 ± 0.0012
M_W [GeV]	[26] / [43]	$80.399 \pm 0.023 \pm 0.010_{\rm SUSY}$
$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$	[52] / [41,53]	$(30.2 \pm 8.8 \pm 2.0_{\rm SUSY}) \times 10^{-10}$
M_h [GeV]	[28] / [54,55]	$> 114.4 \pm 1.5_{\rm SUSY}$
$BR_{b \rightarrow s\gamma}^{EXP}/BR_{b \rightarrow s\gamma}^{SM}$	[44] / [45]	$1.117 \pm 0.076_{\rm EXP}$
		$\pm 0.082_{\rm SM} \pm 0.050_{\rm SUSY}$
$BR(B_s \rightarrow \mu^+ \mu^-)$	[29] / [40]	$(< 1.08 \pm 0.02_{SUSY}) \times 10^{-8}$
$BR_{B \rightarrow \tau \nu}^{EXP}/BR_{B \rightarrow \tau \nu}^{SM}$	[29] / [45]	$1.43 \pm 0.43_{\text{EXP+TH}}$
$BR(B_d \rightarrow \mu^+ \mu^-)$	[29] / [45]	$< (4.6 \pm 0.01_{SUSY}) \times 10^{-9}$
$BR_{B \to X_{s}\ell\ell}^{EXP}/BR_{B \to X_{s}\ell\ell}^{SM}$	[46]/ [45]	0.99 ± 0.32
$BR_{K \rightarrow \mu\nu}^{EXP}/BR_{K \rightarrow \mu\nu}^{SM}$	[29] / [47]	$1.008 \pm 0.014_{EXP+TH}$
$BR_{K \to \pi \nu \bar{\nu}}^{EXP}/BR_{K \to \pi \nu \bar{\nu}}^{SM}$	[48]/ [49]	< 4.5
$\Delta M_{B_s}^{\text{EXP}} / \Delta M_{B_s}^{\text{SM}}$	[48] / [50,51]	$0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$
$\frac{\left(\Delta M_{B_g}^{\text{EXP}} / \Delta M_{B_g}^{\text{SM}}\right)}{\left(\Delta M_{B_d}^{\text{EXP}} / \Delta M_{B_d}^{\text{SM}}\right)}$	$[29] \; / \; [45, 50, 51]$	$1.00\pm 0.01_{\rm EXP}\pm 0.13_{\rm SM}$
$\Delta \epsilon_K^{EXP} / \Delta \epsilon_K^{SM}$	[48] / [50, 51]	$1.08\pm0.14_{\rm EXP+TH}$
$\Omega_{\rm CDM}h^2$	[31] / [13]	$0.1120 \pm 0.0056 \pm 0.012_{\rm SUSY}$
σ_p^{SI}	[25]	$(m_{\tilde{\chi}_1^0}, \sigma_p^{SI})$ plane
jets $+ E_T$	[18, 90]	(mo m) plano
- /	[10,20]	$(m_0, m_{1/2})$ plane

Impressive list of considered observables are combined in a χ^2 analysis:

 $\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}}$ (1)

+
$$\chi^2(M_h) + \chi^2(\operatorname{BR}(B_s \to \mu\mu))$$
 (2)

+
$$\chi^2$$
 (SUSY search limits) (3)

$$+ \sum_{i}^{M} \frac{\left(f_{SM_{i}}^{obs} - f_{SM_{i}}^{fit}\right)^{2}}{\sigma\left(f_{SM_{i}}\right)^{2}}$$
(4)

+
$$\chi^2(\text{LHC} + \text{Xenon})$$
 (5)

- (1) $-\chi^2$ term measurements
- (2) limits (e.g. M_{higgs})
- (3) SUSY limits (LEP and Tevatron)
- (4) nuisances parameters like M_{top}
- (5) recent limits from LHC and Xenon

Figure 9. The one-parameter χ^2 likelihood functions for the lightest MSSM Higgs mass M_h in the CMSSM (upper left), NUHM1 (top right), VCMSSM (lower left) and mSUGRA (lower right). In each panel, we show the χ^2 functions of the post-2010-LHC/Xenon100 constraints as solid lines, with a red band indicating the estimated theoretical uncertainty in the calculation of M_h of ~ 1.5 GeV, and the pre-LHC χ^2 function is shown as a dashed line.

Impact of 1/fb LHC Searches on SUSY

Deviations from QCD in di-jet angular distributions

Deviations from the QCD expectation could reveal a substructure of the quarks ('compositeness' at scale Λ) in analogy to the famous Rutherford scattering 100 years ago

ATLAS: Search for W' SSM

Electron + missing E_T

Muons + missing E_T

CMS: Search for Z' (SSM)

CMS: ee and μμ M_{z'} > 1.94 TeV 95% CL

Microscopic Evaporating Black Holes

THE signature of low-scale quantum gravity ($M_D \ll M_{Pl}$)

BH formation when the two colliding partons have distance smaller than R_S , the Schwarzschild radius corresponding to their invariant mass Cross section from geometry: $\sigma = \pi R_S^2 \sim \text{TeV}^{-2}$ (up to ~100 pb!)

Microscopic BHs decay instantaneously via Hawking evaporation

emitting "democratically" a large number of energetic quarks, gluons, leptons, photons, W/Z, h, etc.

Expect lots of activity in the event, so Use $S_T = Sum E_T$ of all objects (including ME_T) with $E_T > 50 \text{ GeV}$ (good for avoiding pileup)

CMS Experiment at LHC, CERN Data recorded: Mon May 23 21:46:26 2011 EDT Run/Event: 165567 / 347495624 Lumi section: 280 Orbit/Crossing: 73255853 / 3161

Search for Microscopic Black Holes

Standard Model (like) Higgs: LHC at 7/8 TeV

38

Main Page Discussion

Read View source View history Search

Wiki Loves Monuments: Photograph a monument, help Wikipedia and win!

Q

Main page Contents Featured content Current events Random article Donate to Wikipedia

- Interaction
 Help
 About Wikipedia
 Community portal
 Recent changes
 Contact Wikipedia
- Toolbox
- Print/export

Languages

 آلعربية
 Aragonés
 ПППП
 Azərbaycanca
 ПППП
 Беларуская
 Вгеzhoneg
 Български
 Català
 Česky
 Cymraeg

John the Evangelist (20th-21st Century AD) is an itinerant preacher^[1] and a major supersymmetric^[2] figure who leads a movement of Susyites^[3] at the Geneva Lake. Some scholars maintain that he is influenced by the Grand Unifiers^[14]. Susyites expect a deluge of particles although there is no direct evidence to substantiate this. John is regarded as a prophet in the Cosmo^[5], AstroPi^[6] and PiPi^[7] faiths.

John the Evangelist

St. John the Baptist Preaching by Anton Raphael Mengs (c. 1775)

Prophet, Preacher, Forerunner, Martyr

Image a la Sergio da Vittorio Veneto

We experimentalists owe you great thanks.

So just continue in the same vein which you are intending to do