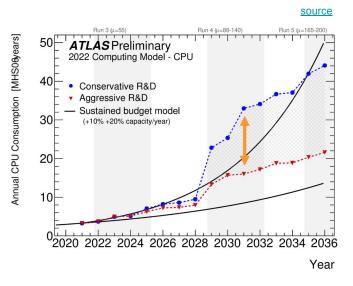
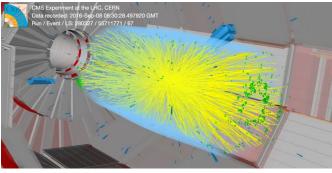

AdePT input to ESPPU

Severin Diederichs, on behalf of the AdePT team severin.diederichs@cern.ch CERN, EP-SFT



Full Simulation must become more efficient

Full Simulation must become more efficient ... using GPUs?

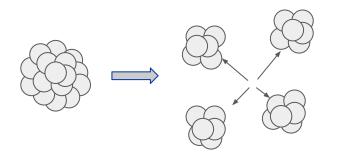


- <u>Top500</u> dominated by GPU clusters
- <u>Green500</u> completely dominated by GPU clusters

Top 50 of Green500 are all GPU-based

Use GPUs to run full simulation?

Porting GEANT4 to GPUs seems easy...



source

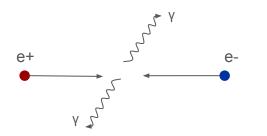
embarrassingly parallel problem
 perfect for GPUs!

Porting GEANT4 to GPUs sooms easy is very difficult

Hadronic physics

Fermi-Breakup

G4: 991 reaction channels!


- embarrassingly parallel problem
 perfect for GPUs!
- huge amount of divergence in physics and geometry

→ terrible for GPUs!

Porting GEANT4 to GPUs seems easy is very difficult

Electromagnetic physics

Annihilation

- embarrassingly parallel problem
 perfect for GPUs!
- huge amount of divergence in physics and geometry

→ terrible for GPUs!

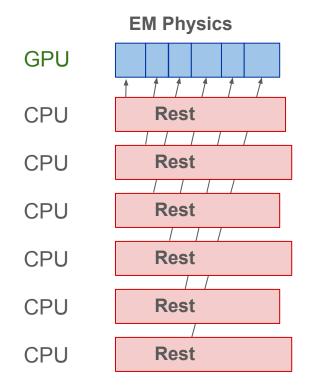
Approach: offload electromagnetic part to GPU

Porting G4 to GPUs

Typical LHC production run

Rest: ~30%

EM Physics: ~70%

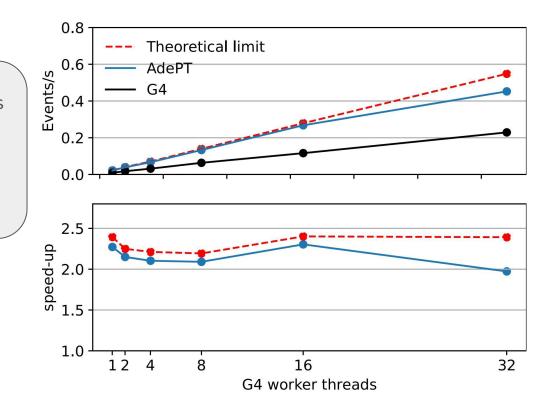

Porting G4 to GPUs

~ 3.3x theoretical speed-up using GPUs

Porting G4 to GPUs

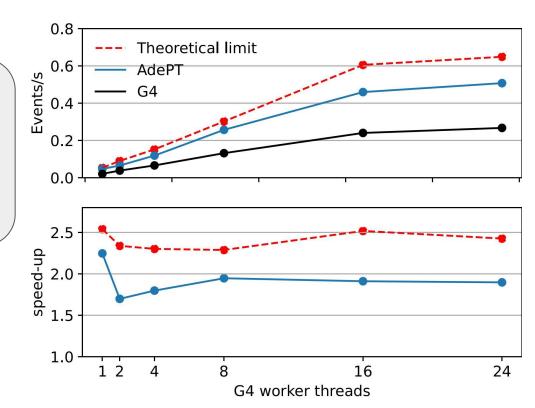
~ 3.3x theoretical speed-up using GPUs

Realistically 16-32 CPU cores per GPU


Ambitious goals:

- close-to-ideal speed-up
- better energy efficiency

AdePT: current performance results


GPU: Nvidia A100 CPU: AMD EPYC 7752 96 cores Input: 4 TTBar per thread Geometry: CMS2018 No magnetic field Simple scoring of energy deposition

AdePT: current performance results

GPU: Nvidia RTX4090 CPU: AMD Ryzen 9 16 cores Input: 4 TTBar per thread Geometry: CMS2018 No magnetic field Simple scoring of energy deposition

Potential usage of consumer-grade GPUs?

Integration of experimental frameworks crucial

AdePT:

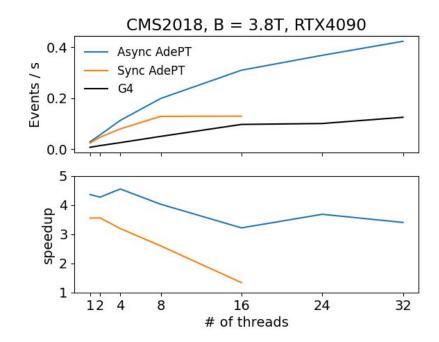
• header-based library for simple integration

Integration with a single line! ~

- **Generic scoring**: calling the user-defined sensitive detector code on CPU
- Specific experimental needs require additional development and can penalize performance

Gaussino GaussinoSimulation(PhysicsConstructors=["GiGaMT AdePTPhysics", "GiGaMT G4EmStandardPhysics", "GiGaMT G4EmExtraPhysics", "GiGaMT G4DecayPhysics", "GiGaMT G4HadronElasticPhysics", "GiGaMT G4HadronPhysicsFTFP BERT", "GiGaMT G4StoppingPhysics", "GiGaMT G4IonPhysics", "GiGaMT G4NeutronTrackingCut"])

Future challenges


- Promising speed-up obtained in complex test simulations required in production setups
- Achieve superior energy efficiency on GPU
- Remove bottlenecks: faster geometry using a surface model
- Explore usage of GPUs with **FP32 and below**
- **Easy integration** with a twist! Experiment-specific code needed?
- Maintain GPU code per experiment for a decade Portability, stability?
- Put more physics on GPU to increase throughput

AdePT: current performance results

GPU: Nvidia RTX4090 Input: 1 TTBar per thread Geometry: CMS2018 uniform magnetic field

