

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Celeritas and an HPC perspective of detector simulation R&D

Seth R Johnson

Celeritas Code Lead Scalable Engineering Applications

Celeritas core team:

Elliott Biondo (ORNL), Julien Esseiva (LBNL), Hayden Hollenbeck (UVA), Seth R Johnson (ORNL), Soon Yung Jun (FNAL), Guilherme Lima (FNAL), Amanda Lund (ANL), Ben Morgan (U Warwick), Stefano Tognini (ORNL) Celeritas core advisors:

Tom Evans (ORNL), Philippe Canal (FNAL), Marcel Demarteau (ORNL), Paul Romano (ANL)

ESPPU Input 22 November, 2024

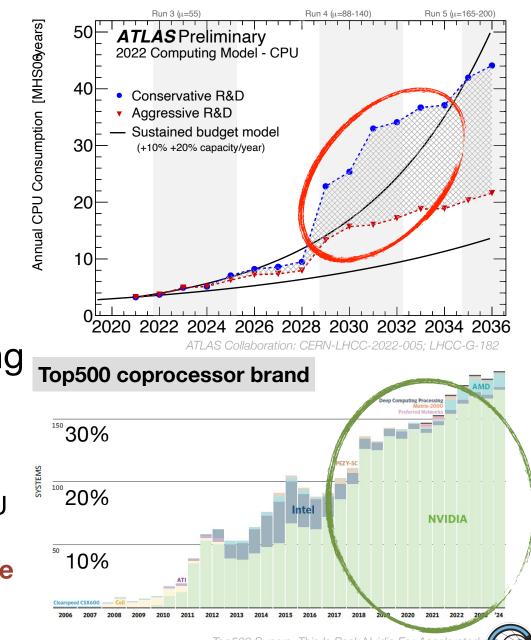
Celeritas: overview

Using next-generation computing to accelerate HEP's hardest simulations

LHC beamline ©CERN

- GPU optimized, CPU reproducible
- Full-fidelity Monte Carlo detector simulation
- EM physics and soon muons, optical photons
- Automated Geant4 integration (geometry, physics, SD)
- Open source and actively seeking collaborators

https://celeritas.ornl.gov/


Nvidia H100 GPU @Nvidia

Motivation: HEP×HPC

- **Demand** in high energy physics (HEP) is rapidly increasing
 - $\geq 10 \times$ full simulation from LHC-HL upgrade; more needed for DUNE, XLZD, EIC, ...
 - AI/ML-based fast simulation methods will need massive training data, ideally generated on GPU
- **Supply** from high performance computing (HPC) is fundamentally changing
 - "Heterogeneous" architectures dominate HPC
 - e.g., Perlmutter reports 5× average energy efficiency*
 - Demand for AI/ML training and models will accelerate deployment of GPUs for scientific computing

National Laboratory

Prerequisite: GPU availability

Note: focus is on GPUs due to hardware development trends

- Capacity: how to utilize existing resources with GPUs
 - Online computing hardware during shutdown periods (CMS high-level trigger farm)
 - Multidisciplinary institutional purchases (US DOE computing facilities)
- Efficiency: whether to purchase new GPUs
 - Requires accurate electrical power measurement of real-life hardware options
 - Lifetime analysis incorporating hardware capital investment, power usage, facility space

Preliminary educated guesses:

- Lots of "free" hardware to use
- GPU accelerators are good investments

Explore innovative GPU/HPC methods

- Requirement: Maximize utilization of hardware resources* *2019 recommendation is focused on SIMD
- Challenge: Changing technology^{**} uses heterogenous architectures **GPUs are also a moving target as they shift from graphics→science→Al
- *Recommendation:* Develop new GPU- and HPC-optimized methods
 - ✓ New algorithms targeted at track-parallel full-fidelity simulations[†] [†]and integrate **support in experiment frameworks** which often assume track serialization!
 - \checkmark Accelerate compute-intensive EM physics, optical physics
 - ✓ Machine learning (ML)-based fast simulations, **preferably using data generated on device**
 - Distributed-memory cooperation to reduce I/O bandwidth (HPC)
 - "Oversampling" (multiple simulated responses per event) to maximize GPU parallelism

And improve availability of HPC workflows

Improve physics and framework validation

- *Requirement:* Experiments need improved physics models
- Challenge: Production simulations must validate* new code *High-level validation is expensive in computing time and personnel qualifications
- *Recommendation:* Adopt software engineering best practices
 - Add unit testing and verification for low-level components and physics models
 - Automate low-level validation problems for accepting new physics
 - Adopt agile programming techniques to reduce time between testing and deployment
 - Improve modularity of physics (Geant4 models are not "a la carte")

GPU "offload" is effectively a new physics model (Celeritas, AdePT, Opticks)

Reduce simulation costs with automated biasing

- *Requirement:* Background calculations needed by experiments with increasing sensitivity and complexity
 - Natural radiation (earth, cosmic): low energy/rare event experiments (dark matter, 0vββ)
 - Beam-induced background: EIC, muon collider
- Challenge: Need to reduce (not just accelerate) simulation compute time
 - Manual cutoffs and weights used to reduce neutron simulation time in ATLAS
 - Manual geometric splitting/cutoffs in CMS

& OAK RIDGE

lational Laboratory

- Manual per-region secondary production/tracking cutoffs
- *Recommendation:* Automated biasing/variance reduction (VR) methods
 - Extend well-studied VR methods^[1] that focus on time-independent neutral particles
 - ML/genetic algorithms/... to explore parameter space for splits/cutoffs?

[1] Royston, K, T Evans, S Hamilton, and G Davidson. 2023. "Weight Window Variance Reduction on GPUs in the Shift Monte Carlo Code." In ANS MC2023-The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. ANS M&C Topical Meeting. Niagra Falls, Ontario, Canada.

High-level suggestions (pontification)

- Capitalize on widely developed tech (follow the money)
 - Once upon a time, most computing was science & engineering; now it's TikTok (AI)
 - Explosion in development of open source software: TikTok begets RapidJSON
 - Phase out HEP-specific software if a more popular alternative exists: focus investment on domain-specific requirements
- Increase common software infrastructure inside HEP and outside it
 - Key4hep, DD4HEP are great examples of unifying future frameworks
 - Scientific software (SSW) ecosystem has resulted from improved open source model
 - Universal tools **increase diversity** by lowering barrier to entry from other fields

Purpose	HEP solution	SSW
Package management	ATLAS/CMS externals	Spack
Analysis & plotting	ROOT	Jupyter, Python, R
Virtual file system	CVMFS	Docker, Ceph

Questions/pillorying?

9