Software Maintaince & QA

Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

Dmitry Kalinkin
University of Kentucky

%% Kentucky. 11/27/2024

About speaker

» Medium Energy Nuclear Physicist with experience of the RHIC collider experiments

» Deputy Software and Computing Coordinator for Development at the ePIC experiment
at EIC collider

» Validation WG Convener in the ePIC experiment

Expect some ePIC/EIC references, but this is not an overview of any existing experiment’s
practices.

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

Software maintainability

(Maintainability) = 171—5.2~log(HV)—O.23-(CC)—1642~log(LOC)+50~\/2.46 - (% comments),

where HV — Halstead's Volume, CC — Cyclomatic Complexity

4 Over-reliant on LOCs. Could use a term for domain knowledge?

Maintenance: A process in which facilitates
» incorporation of new features

» improval of performance

» adaptation to changing conditions

As a side effect we conserve resources and build trust in software.

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

e Maintenance
]

1 Correction
» addressing bugs preemptively and from reports
2 Prevention
» changes to ensure that desired behaviour is preserved after future changes
3 Perfectioning
» aligning with use cases of the long term future
» removal of ineffective functionality
4 Adapting
» changing environments (dependencies, operating systems, hardware)
» new technologies
» new operation processes

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

Dependency management

Sustainable development of dependencies:
» ldentifiable group of active core developers

» Project matches or capable of matching the technical requirements
» Open development model (repo on a public Git forge, public developer meetings)

» That software itself is maintainable

Clear performance indicators for experiments to pick adoptable technologies and
developers to strive for.

Succesful high-level projects such as DD4hep and Acts currenly adopted across different
communities.

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

Testing

Primary interest — automated testing (propagation of assumptions through software
evolution)

General classification:

» Unit testing (e.g. for individual algorithms in reconstruction framework)

» Integration tests (e.g. connection to an external DB works, file formats match)

» Functional tests

* Smoke tests
e End-to-end run (e.g. full reconstruction with benchmarks)

>

» Computing performance benchmarks (memory use and CPU time)

Pareto rule apply:

» 20% of code causes 80% of bugs
» 80% of bugs are uncovered by 20% of tests

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

Tracking for Cl artifacts

Version of B .
Comparative testing is powerful if we look at a single change
at a time.

vesinof A Benchmarks can be as simple and universal as histogramming
Version of C every branch in short output files to look for possible changes
@ Latost main branch run in value distributions.

@ Historical data
» Need for a tool that extends traditional Cl dashboard to include universal metrics such
as named profiles and histograms, like rivet-mkhtml
» Need metadata integrated with
e package managers
e git histories
e calibration databases
e configuration registries
» Possibly a Cl-agnostic tracker, like MLflow
» User interface to help navigate multi-dimensional nature of recorded points
» Synergies with “online” data QA

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

Workflow management -

Tools that provide binding of individual components to achieve automation towards

specific tasks

» Common Workflow Language » Nextflow
» DAGMan » Snakemake
» Makeflow » Workflow Description Language

A lot of focus on getting the DSL or file format part right, but, unfortunately, high-level
descriptions are not as efficient. Low-level are not portable between sites.

Doing HTC effectively is hard. In case of testing, support for data locality for intermediate
products is desirable.

» central storage is always an option, but comes with a bottleneck for distributed
computing
» some level of short term caching between pipelines is needed

Declarative specificaitons for Cl allow every user to contribute to — transparent
deployment procedures, avoid gatekeeping maintenance behind access.

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025 8

Reproducibility

[1
S Missing tooling integration between:

i

» Package management (spack)

» Workflow management
» Persistent storage index and backend

Experiment’s framework

Reconstructed data
O(CPU-centuries)

This boundary is arbitrary

A Merkle tree

Analysis software

Workflow artifacts

Means to achieve:

» Reproducible environments/workflows
Immutable environments are not a solution to reproducibility! Modifying arbitrary components at

different level is a key functionality to extract utility out of reproducibility.
» Software designed with care about how PRNG sequences are consumed
N.B. This is not a call for a bit-by-bit reproducibility

» Sandboxing —
% Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025 9

Infrastructure for running tests B

Testing with elements of full simulation/reconstruction becomes extremely
resource-hungry

» Testing software is much like doing an analysis

» Instead of fixed dedicated Cl resource, an ideal deployment would reuse existing HTC
computing and scale its use on demand

» No interoperability between industry Cl tools (GitHub Actions, GitLab Cl, ...) and
WMS (Slurm, HTCondor, ...) due to requirement of Docker

>

» Time for Cl functionality in REANA?

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025 10

H Validation effort for the ePIC detector design

1 Container pipeline

Base container

eic-spack

ePIC geometry
ElCrecon

ePIC stack

Simulate

Analyze

Running in a dedicated
GitLab ClI
(AMD EPYC 7H12 - 256
threads, 512 GB)

* University of
Kentucky:

Artifacts

image_browser

Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

“Detector' and “physics'' benchmarks

image_browser, a prototype

eril)

108950

107050
107053

PlotType

20GeV_Ecaigarel

Home Physics Detector

e

|
L o Lo .
- | - | |
L o o .

c

https://eic.jlab.org/epic/image_browser.html

Application of Al B

» long term projections are subject to a large uncertainty
» expect a major change in cost function for routine development tasks

» software as a knowledge database with value in its connections to material world
unambiguous documentation for experiment’s hardware will be most wanted?

» regardless of how landscape will look, the necessary tooling will need to be deployed and adopted
...so embrace automation now!

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025 12

J
E]

EIC SOFTWARE:
Statement of Principles

@ We aim to develop a diverse workforce, while also cultivating
an envlronment of equity and inclusivity as well as a culture of
belongi

@ We will have an unprecedented compute-detector integration:
« We will have a common software stack for online and offine software,
including the processing of streamed data and its time-ordered
structure

* We aim for autonomous alignment and calibration.

* We aim for a rapid, near-real-time turnaround of the raw data to online
and offline productions

© We will leverage heterogeneous computing:
« We will enable distributed workflows on the computing resources of the
worldwide EIC community,leveraging not only HTC but also HPC
systems.

« EIC software should be able to run on as many systems as possible,

P i e.g., accelerat

a5 GPUs, where beneficial

 We will have a modular software design with structures robust against
changes in the computing environment sa that changes in underlying
code can be handled without an entire overhaul of the structure.

@ We will aim for user-centered design:
« We will enable scientists of alllevels worldwide to actively participate in

the science program of the EIC, keeping the barriers low for smaller
teams

« EIC software will run on the systems used by the community, easily.
* We aim for a modular development paradigm for algorithms and tools

without the need for users to interface with the entire software
environment.

5 %

Guiding principles

Example case: “EIC Software: Statement of principles'

Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025

© Our data formats are open, simple and self-descriptive:
« We will favor simple flat data structures and formats to encourage
collaboration with computer, data, and other scientists outside of NP
and HER.

* We aim for access to the EIC data to be simple and straightforward,

© We will have reproducible software:

+ Data and analysis preservation wil be an integral part of EIC software
and the workflows of the community.

« We aim for fully reproducible analyses that are based on reusable
software and are amenable to adjustments and new interpretations.

@ We will embrace our community:

« EIC software will be open source with attribution to its contributors.

« We will use publicly available productiviy tools

« EIC software will be accessible by the whole community.

« We will ansure that mission critical software components are not
dependent on the expertise of a single developer, but managed and
maintained by a core group.

+ We will not reinvent the wheel but rather aim to build on and extend
existing efforts i the wider scientific community.

« We will support the community with active training and support sessions
where experienced software developers and users interact with new

« We will support the careers of scientists who dedicate their time and
effort towards software development.

© We will provide a production-ready software stack throughout the
development:
« We will not separate software development from software use and
supp
« We are committed to providing a software stack for EIC science that
continuously evolves and can be used to achieve al EIC milestones

« We will deploy metrics to evaluate and improve the quality of our
software

* We aim to continuously evaluate, adapt/develop, validate, and integrate
new software, workflow, and computing practices.

% Universityof
Kentucky:

Advertised at
https://eic.github.io/
activities/principles.
html

P

<

agile development

» production-ready
software stack

» meeting near-term
needs of ePIC

» timeline-based
prioritization

» user-centered design

https://eic.github.io/activities/principles.html
https://eic.github.io/activities/principles.html
https://eic.github.io/activities/principles.html

Conclusion

Possible recommendations are:

» Consider a reference set of Cl tools with support of running on existing farms

» Develop tooling for quantitative tracking of metrics with focus on HEP/NP experiment
needs

» Embrace reproducibility in software design, delivery and workflows for data processing
and analysis

» Expand user training to get them proficient and engaged with modern DevOps practices

% Universityof
Kentucky:
Mini workshop: Trig & Reco Input for European Strategy for Particle Physics 2025 14

