
Vladimir V. Gligorov, CNRS/LPNHE/CERN
HSF Reconstruction & Software Triggers meeting

Cyberspace, 27.11.2024

Building sustainable software communities

With thanks to
many LHCb

colleagues for input
and being sounding
boards for this talk

all bad/wrong
opinions and errors

are mine alone

2

3

A stack I can work with

4

A stack I can work with

Tests that help me work

5

A stack I can work with

Tests that help me work

Code review that teaches me

6

A stack I can work with

Tests that help me work

Code review that teaches me

Having the time to develop
to the best of my ability

7

A stack I can work with

Tests that help me work

Code review that teaches me

Having the time to develop
to the best of my ability

Merged code running in production

*One can nitpick that 2 and 3 apply to almost any system, but the point is the scale at which they apply

General contextual axioms for this talk

1. A collaboration’s software is a subdetector
which is never turned off

2. This subdetector is constantly evolving
3. This subdetector is deployed in and must

adjust to a constantly shifting environment
4. This subdetector must be maintained for

years (decades) after it stops taking data

9

Shared
training

10

Shared
training

Shared
Maintenance

11

Shared
training

Shared
Maintenance

Career
structure

12

Shared
training

Shared
Maintenance

Intellectual
autonomy

Career
structure

13

Shared
training

Shared
Maintenance

Intellectual
autonomy

Agreed
goals

Career
structure

Axioms concerning training

1. The requirements of real-time HEP
software are at the edge of any application
in any sector (including private)

2. Universities do not teach the skills needed
to develop software at this level

3. Therefore we must teach them ourselves,
while keeping up with developments
outside HEP in architecture & languages

15

16

17

18

Navigating a heterogeneous world
The volume of data processed in real-time
has increased by 1-2 orders of magnitude
per decade with little sign of slowing down

When figuring out how to best utilise
existing and future scientific facilities we are
challenged by the ongoing fragmentation of
high-performance computing architectures,
as well as computing languages

Atomic projects addressing one part of the
processing pipeline offer an attractive way
to train and retain talented people because
they can offer both a manageable learning
curve and concrete career payoffs.

On the other hand integrating these into
production systems and mantaining them
can bring significant hidden costs.

}Balancing R&D and production
is intimately connected to how
we prioritise training and heavily
influences people's careers. It is
a key challenge facing in
particular the trigger community
over the next decade(s).

20

Shared
training

Shared
Maintenance

Agreed
goals

Intellectual
autonomy Job security

21

A stack I can work with

Tests that help me work

Code review that teaches me

MAINTENANCE

22

23

Maintenance and training go together

1. It is in the interest of all developers to
keep the codebase “clean” and tests green

2. Even more so for a real-time system!

3. If you spend time training people, you
want them to help with the maintenance.

4. But physicists are often actively penalised
for working on maintenance

25

26

Shared
training

Shared
Maintenance

Agreed
goals

Intellectual
autonomy

Career
structure

27

28

Teaching
& admin

Rolling
contracts

Chasing
grant money

Misaligned incentives in HEP SW jobs
1. Some countries are creating “technology-

oriented” positions, but typically cross-
experiment and R&D oriented

2. Long-term support for physicists to start
groups around software remains poor

3. The money being spent generally targets
ML/AI applications which sometimes
distorts incentives for production code

30

31

32

Low pay

33

Low pay Insecure
and opaque

career path

34

Low pay Insecure
and opaque

career path

Decade-
long projects

35

Low pay Insecure
and opaque

career path

Decade-
long projects

No
clear

path beyond
SM

Whether or not this is a fair description of reality, what matters is how it appears to students! 36

Low pay Insecure
and opaque

career path

Decade-
long projects

No
clear

path beyond
SM

Excellent
pay

Few-year
projects

Fairly
clear

career

Answer
big

questions

Scoping is important

1. HEP operates a high staff turnover model,
and we have little chance to change this

2. Salaries are generally uncompetitive and
again there is little chance to change this

3. Where we have some hope is tuning our
enviroment to maximize the chances of
career breakthroughs for early career staff

38

39

40

41

42

Discussions around software careers inevitably
loop back to the topic of increased recognition

However, asking for recognition makes you
dependent on the opinions of others

In addition we often ask for recognition when
what we really mean is "I should be able to work
on the things I believe are important without
worrying about my career safety"

This is why I advocate that it is better to directly
ask for autonomy and the resources to pursue it

Is recognition a trap?

44

Shared
training

Shared
Maintenance

Agreed
goals

Intellectual
autonomy

Career
structure

45

46

2042 2043 2044 2045 2046 2047

Physics exploitation

My own unofficial interpretation of the LHC schedule relevant for software!

1. Creating sustainable software communities is
one of the biggest challenges facing the field.

2. Technology can't give us a value system, but
it can make certain prioritisations easier.

3. The world around us increasingly recognises
that performant and reliable software is key
to desirable hardware. So should we!

4. A high-turnover staffing model is painful and
requires continuous vigilance and a focus on
individual progression to not be exploitative.

Final thoughts on training & careers

1. Creating sustainable software communities is
one of the biggest challenges facing the field.

2. Technology can't give us a value system, but
it can make certain prioritisations easier.

3. The world around us increasingly recognises
that performant and reliable software is key
to desirable hardware. So should we!

4. A high-turnover staffing model is painful and
requires continuous vigilance and a focus on
individual progression to not be exploitative.

Final thoughts on training & careers

1. Creating sustainable software communities is
one of the biggest challenges facing the field.

2. Technology can't give us a value system, but
it can make certain prioritisations easier.

3. The world around us increasingly recognises
that performant and reliable software is key
to desirable hardware. So should we!

4. A high-turnover staffing model is painful and
requires continuous vigilance and a focus on
individual progression to not be exploitative.

Final thoughts on training & careers

1. Creating sustainable software communities is
one of the biggest challenges facing the field.

2. Technology can't give us a value system, but
it can make certain prioritisations easier.

3. The world around us increasingly recognises
that performant and reliable software is key
to desirable hardware. So should we!

4. A high-turnover staffing model is painful and
requires continuous vigilance and a focus on
individual progression to not be exploitative.

Final thoughts on training & careers

51

BACKUP

*All these issues are structural and none of it is the fault of the people being trained

The eternal cycle of software training

1. Training new developers is expensive
2. For C++/performance code many

institutes have little training capacity
3. Remaining effective post-training

requires you to use the acquired skills
4. Unfortunately once trained, people

often have to move to analysis or
hardware work in order to get tenure

