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*One can nitpick that 2 and 3 apply to almost any system, but the point is the scale at which they apply

General contextual axioms for this talk

1. A collaboration’s software is a subdetector 
which is never turned off  

2. This subdetector is constantly evolving 
3. This subdetector is deployed in and must 

adjust to a constantly shifting environment 
4. This subdetector must be maintained for 

years (decades) after it stops taking data
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Axioms concerning training

1. The requirements of  real-time HEP 
software are at the edge of  any application 
in any sector (including private) 

2. Universities do not teach the skills needed 
to develop software at this level 

3. Therefore we must teach them ourselves, 
while keeping up with developments 
outside HEP in architecture & languages
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Navigating a heterogeneous world
The volume of  data processed in real-time 
has increased by 1-2 orders of  magnitude 
per decade with little sign of  slowing down 

When figuring out how to best utilise 
existing and future scientific facilities we are 
challenged by the ongoing fragmentation of  
high-performance computing architectures, 
as well as computing languages  

Atomic projects addressing one part of  the 
processing pipeline offer an attractive way 
to train and retain talented people because 
they can offer both a manageable learning 
curve and concrete career payoffs.  

On the other hand integrating these into 
production systems and mantaining them 
can bring significant hidden costs. 

}Balancing R&D and production 
is intimately connected to how 
we prioritise training and heavily 
influences people's careers. It is 
a key challenge facing in 
particular the trigger community 
over the next decade(s).
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Maintenance and training go together

1. It is in the interest of  all developers to 
keep the codebase “clean” and tests green 

2. Even more so for a real-time system! 

3. If  you spend time training people, you 
want them to help with the maintenance. 

4. But physicists are often actively penalised 
for working on maintenance
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Misaligned incentives in HEP SW jobs
1. Some countries are creating “technology-

oriented” positions, but typically cross-
experiment and R&D oriented 

2. Long-term support for physicists to start 
groups around software remains poor 

3. The money being spent generally targets 
ML/AI applications which sometimes 
distorts incentives for production code
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Whether or not this is a fair description of  reality, what matters is how it appears to students! 36
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Scoping is important

1. HEP operates a high staff  turnover model, 
and we have little chance to change this 

2. Salaries are generally uncompetitive and 
again there is little chance to change this 

3. Where we have some hope is tuning our 
enviroment to maximize the chances of  
career breakthroughs for early career staff
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Discussions around software careers inevitably 
loop back to the topic of  increased recognition 

However, asking for recognition makes you 
dependent on the opinions of  others 

In addition we often ask for recognition when 
what we really mean is "I should be able to work 
on the things I believe are important without 
worrying about my career safety" 

This is why I advocate that it is better to directly 
ask for autonomy and the resources to pursue it

Is recognition a trap?
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Physics exploitation

My own unofficial interpretation of  the LHC schedule relevant for software!



1. Creating sustainable software communities is 
one of  the biggest challenges facing the field.  

2. Technology can't give us a value system, but 
it can make certain prioritisations easier. 

3. The world around us increasingly recognises 
that performant and reliable software is key 
to desirable hardware. So should we! 

4. A high-turnover staffing model is painful and 
requires continuous vigilance and a focus on 
individual progression to not be exploitative.

Final thoughts on training & careers
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*All these issues are structural and none of  it is the fault of  the people being trained

The eternal cycle of  software training

1. Training new developers is expensive 
2. For C++/performance code many 

institutes have little training capacity 
3. Remaining effective post-training 

requires you to use the acquired skills 
4. Unfortunately once trained, people 

often have to move to analysis or 
hardware work in order to get tenure


