CFTC Ciências ULisboa

Probing the early Universe with BSMPT v3: CP in the Dark, a test case

LHC Higgs Working Group WG3 (BSM) -Extended Higgs Sector subgroup meeting November 19th, 2024

Philipp Basler, Lisa Biermann, Margarete Mühlleitner, Jonas Müller, Rui Santos, Johann Plotnikov, **João Viana**

Funded by FCT - in the framework of the projects no. CFTC: UIDB/00618/2020, UIDP/00618/2020, PRT/BD/154191/2022

Electroweak phase transition

Vacuum expectation values (VEV) generated in the early Universe broke the electroweak gauge group. We call this electroweak phase transition (EWPT). ← BSMPT v1/v2

If **first order**, it can produce detectable **gravitational waves (GW)** in upcoming experiments, e.g. LISA. ← BSMPT v3

Interactions out of thermal equilibrium in early Universe. If the model has **CP-violation** then all **Sakharov conditions** for baryogenesis are fulfilled.

https://www.mpi-hd.mpg.de/mpi/de/forschung/abteilungen-und-gruppen/unabhaengige-forschungsgruppen/newfo/forschung/elektroschwache-symmetriebrechung-und-das-higgs-potential

- Next version of BSMPT

Primordial gravitational waves

In a first order EWPT, bubbles of **true vacuum** appear in a sea of **false vacuum**.

The bubbles expand **rapidly**, exerting pressure on the cosmic fluid creating **sound waves (SW)**, and subsequently **GWs**.

After **collision time**, **turbulence** in the cosmic fluid will also generate **GWs**.

The **GWs** could live up to this day as a **stochastic** gravitational wave background.

[10.1016/j.ppnp.2023.104094]

BSMPT v3

Recently released, **BSMPT v3** (e-Print: [2404.19037])

- 1. Calculates and tracks the **minima** of a model.
- 2. Solves the **bounce equation** tunneling rate.
- 3. Calculates the **vacuum history** of the Universe
- Calculates the gravitational wave spectrum and signal-to-noise ratio in LISA.

Available at: https://github.com/phbasler/BSMPT

Effective potential

We use the Coleman-Weinberg (CW) effective potential. It is given by

$V_{\rm eff}(\vec{\omega},T) =$							
$V_o(\vec{\omega})$	+	$V_{\mathrm CW}(ec\omega)$	+	$V_{\rm CT}(\vec{\omega})$	+	$\Delta V(\vec{\omega},T)$	
Tree level potential	Coler effect	nan-Weinberg 1-loo tive potential at T =	op = 0	Counter term potential Tree level VEV and mass matrix are kept at LO values.	Cole effe corr	eman-Weinberg 1-loop ctive potential thermal rections + thermal masses	
h h h		+ + + + + + + + + + + + + + + + + + +	+ 7214	$\left\langle \frac{\partial V_{\rm ct}}{\partial h_i} \right\rangle = \left\langle -\frac{\partial V_{\rm CW}^{(1)}}{\partial h_i} \right\rangle$		+ + + + + + + + + + + + + + + + + + +	
h h	$V_{ m CW} = \sum_{i}$	$(-1)^{F_i} n_i \frac{m_i^4(\phi_\alpha)}{64\pi^2} \left(\log\left[\frac{m_i^2(\phi_\alpha)}{\Lambda^2}\right] \right)$	$\left]-c_i ight)$	$\left\langle \frac{\partial^2 V_{\rm ct}}{\partial h_i \partial h_j} \right\rangle = \left\langle -\frac{\partial^2 V_{\rm CW}^{(1)}}{\partial h_i \partial h_j} \right\rangle$	$\Delta V(T$	arXiv:hep-ph/9901312 $T = \frac{T^4}{2\pi^2} \left\{ \sum_b n_b J_B \left[\frac{m_i^2(\phi_\alpha)}{T^2} \right] - \sum_f n_f J_F \left[\frac{m_i^2(\phi_\alpha)}{T^2} \right] \right\}$	
DOI:10.1142/S0217751X12300256					$V_{\text{daisy}}(\omega, T)$ $= -\frac{T}{12\pi} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$	$\sum_{i=1}^{\text{Higgs}} \left((\overline{m}_i^2)^{3/2} - (m_i^2)^{3/2} \right) + \sum_{a=1}^{n_{\text{gauge}}} \left((\overline{m}_a^2)^{3/2} - (m_i^2)^{3/2} \right) + $	

Probing the early Universe with BSMPT v3: CP in the Dark, a test case

5

Tunneling rate

The tunneling (transition) rate is calculated à la Coleman [doi: 10.1103 / PhysRevD.15.2929], it is given by

$$\Gamma(\vec{\phi}_f \to \vec{\phi}_t) \equiv \Gamma = A(T) e^{-S_E}$$

where the Euclidian action $S_E = S_3$ is given by

$$S_3(T) = 4\pi \int_0^\infty d\rho \,\rho^2 \left[\frac{1}{2} \left(\frac{d\vec{\phi}}{d\rho} \right)^2 + V(\vec{\phi}) \right]$$

$$\frac{d^2\vec{\phi}}{d\rho^2} + \frac{D-1}{\rho}\frac{d\vec{\phi}}{d\rho} = \nabla V(\vec{\phi}) \qquad \vec{\phi}(\rho)\big|_{\rho \to \infty} = \vec{\phi}_f, \quad \frac{d\vec{\phi}}{d\rho}\Big|_{\rho=0} = 0$$

[[]https://arxiv.org/abs/2404.19037]

Probing the early Universe with BSMPT v3: CP in the Dark, a test case

 $V(\varphi)$

Fluctuations

Metastable Vacuum

Characteristic temperatures

Critical temperature
$$T_c$$

 $V(\phi_f, T_c) = V(\phi_t, T_c)$

Nucleation temperature T_n

Decay rate matches Hubble rate. $\frac{\Gamma}{H^4} = 1$

 \sim 1 true vacuum bubble per Hubble volume.

Percolation temperature $T_p(P(T_p) = 0.71)$ Temperature at which 29 % of the false vacuum decayed. (critical density for percolation of spheres in 3D)

Completion Temperature $T_f(P(T_f) = 0.01)$ Temperature at which 99 % of the false vacuum decayed.

Spectrum and SNR

The **peak frequencies** $f_{i,peak}$ and **peak amplitudes** $\Omega_{i,peak}$ are calculated from the following parameters

• Strength of the phase transition (latent heat)

$$\alpha = \frac{1}{\rho_{\gamma}} \Big[V(\vec{\phi}_f) - V(\vec{\phi}_t) - \frac{T}{4} \Big(\frac{\partial V(\vec{\phi}_f)}{\partial T} - \frac{\partial V(\vec{\phi}_t)}{\partial T} \Big) \Big]_{T=T_f}$$

• Inverse time scale

$$\frac{\beta}{H_*} = T_* \left. \frac{d}{dT} \left(\frac{S_3(T)}{T} \right) \right|_{T_*}$$

• Effective d.o.f. energy density

 g_*

- Transition temperature
 - T_*
- Wall velocity (user defined)

 v_w

Signal-to-noise ratio in LISA

The **signal-to-noise (SNR)** ratio in **LISA** is given by

$$\mathrm{SNR} = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} \mathrm{d}f \left[\frac{h^2 \Omega_{\mathrm{GW}}(f)}{h^2 \Omega_{\mathrm{Sens}}(f)}\right]^2}$$

[[]https://web.archive.org/web/20070708045217/http://lisa.jpl.nasa.gov/gallery2.html]

LISA's orbit.

One of the three LISA satellites.

Peak integrated sensitivity curves (PISC) for various experiments. Points **above** a curve are detectable by that experiment.

BSMPT v3

BSMPTv3 is shipped with the following models

- SM
- CxSM
- R2HDM / C2HDM
- N2HDM / CP in the Dark

You can also implement **your model**!

We have tools in *python* and *maple* to help. (a *Mathematica* implementation tool will be released soon).

Any issue contact us in <u>https://github.com/phbasler/BSMPT/issues</u>, or by email at <u>bsmpt@lists.kit.edu</u>.

Test case: CP in the Dark [1807.10322]

Scalar fields

$$\mathbb{Z}_{2} \text{symmetry} \quad \Phi_{1} \to \Phi_{1} \quad , \quad \Phi_{2} \to -\Phi_{2} \quad , \quad \Phi_{S} \to -\Phi_{S}$$

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + \overline{\omega}_{1} + i\Psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \overline{\omega}_{CB} + i\eta_{2} \\ \zeta_{2} + \overline{\omega}_{2} + i(\Psi_{2} + \overline{\omega}_{CP}) \end{pmatrix}, \quad \Phi_{S} = \zeta_{S} + \overline{\omega}_{S}$$

$$\text{Spontaneous CP-violation if } \overline{\omega_{CP}} \neq 0$$

Scalar potential

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} + \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + \left[\left(A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S} + h.c. \right) \right] \\ + \frac{1}{2} \lambda_{1} |\Phi_{1}|^{4} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \frac{1}{2} \lambda_{5} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + h.c. \right] \\ + \frac{1}{4} \lambda_{6} \Phi_{S}^{4} + \frac{1}{2} \lambda_{7} |\Phi_{1}|^{2} \Phi_{S}^{2} + \frac{1}{2} \lambda_{8} |\Phi_{2}|^{2} \Phi_{S}^{2} ,$$

Fermions transform trivially under \mathbb{Z}_2 , so they only couple with Φ_1

$$-\mathcal{L}_Y = \lambda_t \bar{Q}_L \bar{\Phi}_1 t_R + \lambda_b \bar{Q}_L \Phi_1 b_R + \lambda_\tau \bar{L}_L \Phi_1 \tau_R + \dots$$

Dark matter candidate + Dark CP violation

Parameter scan [Lisa Biermann's PhD thesis : DOI:10.5445/IR/1000174880]

m_h	$m_{h_{i,j}}$	m_{H^\pm}	$lpha_i$	λ_2	λ_6	λ_8	m_{22}^2	m_S^2
125.09	$[1, 10^3]$	$[65, 10^3]$	$\left[-\frac{\pi}{2},\frac{\pi}{2} ight]$	[0,9]	[0, 17]	[-26, 26]	$[0, 10^6]$	$[0, 10^6]$

Using ScannerS [2007.02985] and micrOMEGAs [1005.4133], it is imposed

- **Theoretical constraints -** Perturbative unitarity, boundedness from below and vacuum stability.
- **Experimental constraints** EW precision constraints, flavor constraints, Higgs searches and measurements, EDM, relic density.

Then all points were checked for strong first order electroweak phase transitions in BSMPTv3, in a temperature range $T \in [0, 300]$ GeV.

Minimum tracking across the temperature range [DOI:10.5445/IR/1000174880]

At high temperature, the Universe is in the false vacuum and the electroweak symmetry is unbroken. For $T < T_c$ the true vacuum becomes the global minimum, but the transition only occurs at a lower temperature.

Gravitational wave strength and SNR [DOI:10.5445/IR/1000174880]

Gravitational wave strength and SNR [DOI:10.5445/IR/1000174880]

Abundance of points with $\xi_p > 1$ across the parameter space. Good for BAU! Points with SNR > 1 across the parameter space. No favored region.

Relic density and direct detection [DOI:10.5445/IR/1000174880]

Detectable parameter points provide a **dark matter candidate** that does not exceed the relic density. Some detectable parameter points escape the direct detection constraints (even for the most recent LZ results[2410.17036]).

Future of BSMPT

The next steps of BSMPT are

- Beside *python* and *maple*, models can soon be implemented using *Mathematica*.
- Implement the **transport equations** (baryon asymmetry of the Universe).
- More stable and faster **bounce solver**.
- Calculate the **bubble wall velocity** using WallGo[2411.04970]
- Improve the **effective potential** perturbative expansion.

Your ideas and suggestion are welcome! Contact us at <u>https://github.com/phbasler/BSMPT/discussions</u>

Probing the early Universe with BSMPT v3: CP in the Dark, a test case

18

Additional slides

Effective potential

We use the Coleman-Weinberg (CW) effective potential. It is given by

$$V_{\rm eff}(T) = V_0 + V_{\rm CW}^{(1)} + \Delta V(T) + V_{\rm cr}$$

h

• Tree level potential

 V_0

- CW 1-loop potential $V_{CW} = \sum_{i} (-1)^{F_i} n_i \frac{m_i^4 (\phi_{\alpha})}{64\pi^2} \left(\log \left[\frac{m_i^2 (\phi_{\alpha})}{\Lambda^2} \right] - c_i \right)$
- Thermal corrections

$$\Delta V(T) = \frac{T^4}{2\pi^2} \left\{ \sum_b n_b J_B\left[\frac{m_i^2\left(\phi_\alpha\right)}{T^2}\right] - \sum_f n_f J_F\left[\frac{m_i^2\left(\phi_\alpha\right)}{T^2}\right] \right\} \quad V_{\text{daisy}}(\omega, T) = -\frac{T}{12\pi} \left[\sum_{i=1}^{n_{\text{Higgs}}} \left((\overline{m}_i^2)^{3/2} - (m_i^2)^{3/2}\right) + \sum_{a=1}^{n_{\text{gauge}}} \left((\overline{m}_a^2)^{3/2} - (m$$

• Counter terms

۲

$$\left\langle \frac{\partial V_{\rm ct}}{\partial h_i} \right\rangle = \left\langle -\frac{\partial V_{\rm CW}^{(1)}}{\partial h_i} \right\rangle \qquad \left\langle \frac{\partial^2 V_{\rm ct}}{\partial h_i \partial h_j} \right\rangle = \left\langle -\frac{\partial^2 V_{\rm CW}^{(1)}}{\partial h_i \partial h_j} \right\rangle$$

Probing the early Universe with BSMPT v3: CP in the Dark, a test case

arXiv:hep-th/0507214

arXiv:hep-ph/9901312

+

Minimum tracking across the temperature range [DOI:10.5445/IR/1000174880]

	0						
point	$m_{22}^2 [{ m GeV}^2]$	$] m_S^2 [{ m GeV}^2]$	F] Re (A) [GeV] Im (2	4) [GeV]	λ_2	
BP1	529 186.148	3 356 345.49	476.5	42 - 6	78.778	4.299)
BP2	96703.414	32442.949	9 159.6	27 -3	25.391	3.532	2
BP3	34330.331	206553.47	3 142.7	97 81	4.968	4.679)
BP4	65258.809	36279.84'	7 279.5	02 -3	26.645	3.660)
point	λ_3	λ_4	λ_5		λ_6	λ_7	λ_8
BP1	-0.782	0.572	0.07	1 1	.053	16.81	0 -2.093
BP2	-0.796	0.787	-0.05	55 10	0.446	7.596	4.683
BP3	2.779	3.093	0.84	0 10	0.188	1.243	-4.563
BP4	-0.821	0.220	-0.37	71 4	.715	7.760) 14.781
point	m_{H^\pm}	m_{h_1}	m_{h_2}	m_{h_3}	T_c		$\overline{\omega}_{\mathrm{EW}}^{\mathrm{true}}(T_c)$
BP1	710.979	653.473	723.595	980.264	121.9	96	230.06
BP2	269.386	241.718	308.943	549.265	144.4	45	234.08
BP3	344.358	102.422	486.105	649.695	204.0)4	175.41
BP4	200.940	62.680	218.700	560.206	191.3	38	233.12
point	ξ_c	$ \overline{\omega}_{\mathrm{CB}}^{\mathrm{true}}(T_c) $	$ \overline{\omega}_1^{\mathrm{true}}(T_c) $	$ \overline{\omega}_2^{\mathrm{true}}(T_c) $	$ \overline{\omega}_{\mathrm{CP}}^{\mathrm{true}} $	$T_c) $	$\overline{\omega}_S^{\mathrm{true}}(T_c) $
BP1	1.89	0	230.06	0	0		0
BP2	1.62	0	234.08	0	0		0
BP3	0.85	0	167.65	5.89	41.8	3	29.64
BP4	1.22	0	223.42	53.25	39.9	1	27.97

Baryogenesis on BSMPT v2

BSMPT v2 already has the baryonic asymmetry of the Universe (BAU) calculation implemented, but is uses a few approximations

- Kink solution, an interpolated tunneling path between false and true vacuum.
- Assumes a low wall velocity.

source term is properly calculated. We plan to improve the implementation as well as generalize it for any model.

thin - wal

true vacuum

22

FHCK / Semiclassical force method

Our work is based on J. Cline and K. Kainulainen's method [10.1103/PhysRevD.101.063525], the generalization of the FH method for any bubble wall velocity.

Model with a CP-violating complex fermionic mass

 $\mathcal{M} = m(z)e^{i heta(z)}$

Using the Wentzel-Kramers-Brillouin (WKB) ansatz on the Dirac equation

$$\Psi \sim e^{-i\omega t + i\int^z p_{cz}(z')dz'}$$

We get the semiclassical group velocity $oldsymbol{v_g}$ and force F given by

$$v_{g} = \frac{p_{z}}{E} + s_{h} s_{k_{0}} \frac{m^{2} \theta'}{2E^{2} E_{z}} \quad \left| F = -\frac{(m^{2})'}{2E} + s_{h} s_{k_{0}} \left(\frac{(m^{2} \theta')'}{2EE_{z}} - \frac{m^{2} (m^{2})' \theta'}{4E^{3} E_{z}} \right) \right| \quad s_{h} = h \gamma_{||} \frac{p_{z}}{|\mathbf{p}|} \equiv h s_{\mathbf{p}}$$

with $s_{k_0} = 1(-1)$ for particles (anti-particles) and $s = \pm 1$ for spin eigenstates in the *z* –direction (bubble wall). Particles and anti-particles "feel" a different force.

Probing the early Universe with BSMPT v3: CP in the Dark, a test case

DOI:10.3389/0.3390/galaxies10060116

Liouville and collision operator

local particle density. The distribution function is parameterized as $f = \frac{1}{e^{\beta[\gamma_w(E_w + v_w p_z) - \mu]} \pm 1} + \delta f$, where μ is the chemical potential $\int d^3 p \delta f = 0$. The Boltzmann equation acting on the distribution function, reads $L[\mu_h, \delta f_h] = S_h + \delta C_h$ Interaction between **CP-conserving** interactions with the particles bubble wall **CP-violating** interactions with the where the Liouville operator $L^{bahdeswell}$ rce term S_h are defined as

The collision operator δC_h is model dependent.

Probing the early Universe with BSMPT v3: CP in the Dark, a test case

 δf does not change

BAU

We solve for the chemical potentials μ_L

- ϕ EWPT order parameter
- L_w Bubble wall thickness
- 6 μ_L Chemical potentials
 - $\Gamma_{ws} = \Gamma_{sph}$ EW sphaleron rate

To calculate baryonic asymmetry in the Universe we integrate the chemical DCtantial ADET $n\infty$

$$\eta_B = rac{405\Gamma_{
m sph}}{4\pi^2 v_w \gamma_w g_* T} \int_{-\infty}^{\infty} dz \mu_{B_{
m L}} f_{
m sph} e^{-45\Gamma_{
m sph}|z|/4v_w \gamma_w} \qquad f_{
m sph}(z) = \min(1, 2.4 rac{\Gamma_{
m sph}}{T} e^{-40h(z)/T})$$

The experimental value is given by

$$f_{\rm sph}(z) = \min(1, 2.4 \frac{\Gamma_{\rm sph}}{T} e^{-40h(z)/T})$$

 $f_{sph}(z)$ describes the sphaleron rate as a function of the distance to the bubble

$$\eta_B \equiv rac{n_B}{n_\gamma} = (6.2 \pm 0.4) \cdot 10^{^{
m wall}} \, .$$

Computational problems

The semi-classical force method is straightforward to use but we face some numerical challenges

- The different scales of the involved sources might produce stiff systems (numerically unstable). We must find an appropriate integration method.
- The thermal transport coefficients, i.e. D_l , Q_l , *etc.*, are computationally expensive to calculate. We must find fast methods/approximations for them.
- CP-violation can be present without an imaginary mass, e.g. CKM phase. How can we have a general method for all cases.

The project is still in its early days. Ideas/suggestions are welcome!

Moment expansion

We define the momentum averages as

$$\langle X \rangle \equiv \frac{1}{N_1} \int d^3 p X \qquad \qquad N_1 \equiv \int d^3 p f'_{0w,\text{FD}} = -\gamma_w \frac{2\pi^3}{3} T^2$$
$$[\mathcal{X}] \equiv \frac{1}{N_0} \int d^3 p \mathcal{X} f_{0w} \qquad \qquad N_0 = \int d^3 p f_{0w} = \gamma_w \int d^3 p f_0 \equiv \gamma_w \hat{N}_0$$

The velocity pertubations are defined as

$$u_{\ell} \equiv \left\langle \left(\frac{p_z}{E}\right)^{\ell} \delta f \right\rangle$$

The *l*-th moment is given by

$$\left\langle \left(\frac{p_z}{E}\right)^\ell L \right\rangle = \left\langle \left(\frac{p_z}{E}\right)^\ell (\mathcal{S} + \delta \mathcal{C}) \right\rangle$$

Moment expansion

The Liouville term is given by

$$\langle L \rangle = -D_1 \mu' + u_1' + v_w \gamma_w (m^2)' Q_1 \mu,$$

$$\left\langle \frac{p_z}{E}L \right\rangle = -D_2\mu' + u_2' + v_w\gamma_w(m^2)'Q_2\mu$$

 $+ (m^2)' \left\langle \frac{1}{2E^2}\delta f \right\rangle,$

The source term is given by

$$S^{o}_{h\ell} = -v_{w}\gamma_{w}h[(m^{2}\theta')'Q^{8o}_{\ell} - (m^{2})'m^{2}\theta'Q^{9o}_{\ell}]$$

The collision term is given by

$$\delta C_1 \equiv \langle \delta C \rangle$$
 $\delta C_1 = K_0 \sum_i \Gamma_i \sum_j s_{ij} \frac{\mu_j}{T},$
 $\delta C_2 \equiv \langle (p_z/E) \delta C \rangle$ $\delta C_2 = -\Gamma_{\text{tot}} u - v_w \delta C_1.$

BAU

Neglecting electroweak sphalerons we have

$$B = \sum_q (n_q - \bar{n}_q) = 0$$

so that the baryonic chemical potential is given by

$$\mu_{B_{\rm L}} = \frac{1}{2} (1 + 4D_0^t) \mu_{t_{\rm L}} + \frac{1}{2} (1 + 4D_0^b) \mu_{b_{\rm L}} + 2D_0^t \mu_{t_{\rm R}}$$

To calculate baryonic asymmetry in the Universe we integrate the chemical $I_{\eta_B} = \frac{405\Gamma_{\text{sph}}}{4\pi^2 v_w \gamma_w g_* T} \int dz \mu_{B_{\text{L}}} f_{\text{sph}} e^{-45\Gamma_{\text{sph}}|z|/4v_w \gamma_w} \qquad f_{\text{sph}}(z) = \min(1, 2.4 \frac{\Gamma_{\text{sph}}}{T} e^{-40h(z)/T})$

The experimental value is given by

$$\eta \equiv \frac{n_B}{n_{\gamma}} = (6.2 \pm 0.4) \cdot 10^{-10}$$

Collision terms

$$\begin{split} \delta \bar{\mathcal{C}}_{1}^{t_{\rm L}} &= \Gamma_{\rm y}(\mu_{t_{\rm L}} - \mu_{t_{\rm R}} + \mu_{h}) + \Gamma_{\rm m}(\mu_{t_{\rm L}} - \mu_{t_{\rm R}}) \\ &+ \Gamma_{\rm W}(\mu_{t_{\rm L}} - \mu_{b_{\rm L}}) + \tilde{\Gamma}_{\rm SS}[\mu_{i}], \\ \delta \bar{\mathcal{C}}_{1}^{b_{\rm L}} &= \Gamma_{\rm y}(\mu_{b_{\rm L}} - \mu_{t_{\rm R}} + \mu_{h}) \\ &+ \Gamma_{\rm W}(\mu_{b_{\rm L}} - \mu_{t_{\rm L}}) + \tilde{\Gamma}_{\rm SS}[\mu_{i}], \\ \delta \bar{\mathcal{C}}_{1}^{t_{\rm R}} &= -\Gamma_{\rm y}(\mu_{t_{\rm L}} + \mu_{b_{\rm L}} - 2\mu_{t_{\rm R}} + 2\mu_{h}) \\ &+ \Gamma_{\rm m}(\mu_{t_{\rm R}} - \mu_{t_{\rm L}}) - \tilde{\Gamma}_{\rm SS}[\mu_{i}], \\ \delta \bar{\mathcal{C}}_{1}^{h} &= \tilde{\Gamma}_{\rm y}(\mu_{t_{\rm L}} + \mu_{b_{\rm L}} - 2\mu_{t_{\rm R}} + 2\mu_{h}) + \Gamma_{h}\mu_{h} \end{split}$$

Strong sphaleron

$$\begin{split} \tilde{\Gamma}_{\rm SS}[\mu_i] &= \Gamma_{\rm SS}((1+9D_0^t)\mu_{t_{\rm L}} + (1+9D_0^b)\mu_{b_{\rm L}} \\ &- (1-9D_0^t)\mu_{t_{\rm R}}). \end{split}$$

interaction	rate	
$\begin{array}{c} t_L \leftrightarrow t_R + h \\ b_L \leftrightarrow t_R + h \end{array}$	$\Gamma_{y,t}$	
$egin{aligned} b_L &\leftrightarrow b_R + h \ c_L &\leftrightarrow c_R + h \ s_L &\leftrightarrow s_R + h \ t_L &\leftrightarrow b_R + h \ s_L &\leftarrow c_R + h \ c_L &\leftarrow c_R + h \ c_L &\leftarrow s_R + h \end{aligned}$	$\Gamma_{y,b}$	
$t_L \leftrightarrow t_R$	$2\Gamma_{m,t}$	
$egin{aligned} b_L \leftrightarrow b_R \ c_L \leftrightarrow c_R \ s_L \leftrightarrow s_R \end{aligned}$	$2\Gamma_{m,b}$	
$\begin{array}{c} \hline t_L \leftrightarrow b_L \\ \hline c_L \leftrightarrow s_L \\ \hline \end{array}$	Γ_W	
$n \leftrightarrow 0$		
$\operatorname{all} L \leftrightarrow \operatorname{all} R$	Γ_{ss}	