INTERMEDIATE CHARGE-BREAKING PHASES IN THE 2-HIGGS-DOUBLET MODEL

Christoph Borschensky

(e-mail: christoph.borschensky@kit.edu)

based on JHEP02(2024)232 (arXiv:2308.04141)

with Mayumi Aoki, Lisa Biermann, Igor P. Ivanov, Margarete Mühlleitner, Hiroto Shibuya

LHC HIGGS WG3 – Extended Higgs Sector Subgroup Meeting – 19/11/2024

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

- Exotic intermediate phases such as charge-breaking ones (massive photons, ...)?
- ► First-order and multi-step phase transitions? EW-symmetric (high T) \rightarrow neutral \rightarrow charge-breaking \rightarrow neutral (T = 0)
- Compatibility with collider constraints?

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

- Exotic intermediate phases such as charge-breaking ones (massive photons, ...)?
- ► First-order and multi-step phase transitions? EW-symmetric (high T) \rightarrow neutral \rightarrow charge-breaking \rightarrow neutral (T = 0)
- Compatibility with collider constraints?

Excellent testbed for BSM physics with extended scalar sectors

MotivationTemperature correctionsParameter scan using the full $V_{eff}(T)$ SurThe CP-conserving 2HDM (type I) with softly broken \mathbb{Z}_2 symmetry

Tree-level scalar potential of the real 2HDM:

$$\mathcal{V}_{\text{tree}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$$

with

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + \bar{\omega}_{1} + i\psi_{1} \end{pmatrix}, \qquad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \bar{\omega}_{CB} + i\eta_{2} \\ \zeta_{2} + \bar{\omega}_{2} + i(\psi_{2} + \bar{\omega}_{CP}) \end{pmatrix}$$

and real fields ρ_i , η_i , ζ_i , ψ_i (*i* = 1, 2), and VEVs $\bar{\omega}_i$ (*j* = 1, 2, CP, CB)

MotivationTemperature correctionsParameter scan using the full $V_{eff}(T)$ SurThe CP-conserving 2HDM (type I) with softly broken \mathbb{Z}_2 symmetry

Tree-level scalar potential of the real 2HDM:

$$\mathcal{V}_{\text{tree}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$$

with

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + \bar{\omega}_{1} + i\psi_{1} \end{pmatrix}, \qquad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \bar{\omega}_{CB} + i\eta_{2} \\ \zeta_{2} + \bar{\omega}_{2} + i(\psi_{2} + \bar{\omega}_{CP}) \end{pmatrix}$$

and real fields ρ_i , η_i , ζ_i , ψ_i (*i* = 1, 2), and VEVs $\bar{\omega}_i$ (*j* = 1, 2, CP, CB)

▶ Present-day EW-breaking vacuum at zero temperature T = 0 (with $v_i \equiv \overline{\omega}_i |_{T=0}$):

$$v_{CB} = v_{CP} = 0$$
 and $v^2 \equiv v_1^2 + v_2^2 = (246.22 \text{ GeV})^2$ and $\tan \beta \equiv v_2 / v_1$

Phases in the 2HDM

Type of vacuum	$\sqrt{2}\langle \Phi_1 \rangle$	$\sqrt{2} \langle \Phi_2 \rangle$
Neutral EW-symmetric	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$
Neutral EW-breaking	$\begin{pmatrix} 0\\ \bar{\omega}_1 \end{pmatrix}$	$\begin{pmatrix} 0\\ \bar{\omega}_2 \end{pmatrix}$
CP-breaking	$\begin{pmatrix} 0\\ \bar{\omega}_1 \end{pmatrix}$	$\begin{pmatrix} 0\\ \bar{\omega}_2 + i\bar{\omega}_{\rm CP} \end{pmatrix}$
Charge-breaking (CB)	$\begin{pmatrix} 0\\ \bar{\omega}_1 \end{pmatrix}$	$egin{pmatrix} ar{\omega}_{CB} \ ar{\omega}_{2} \end{pmatrix}$

Phases in the 2HDM

Motivation

Parameter scan using the full $V_{off}(T)$

 m_{22}^2

EW symmetric

 $v_1 = 0$

 $v_2 \neq 0$

 $\lambda_3 > 0$

Phases in the 2HDM

Christoph Borschensky – Intermediate CB phases in the 2HDM

4

 m_{11}^2

Effective potential at finite temperatures T

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_T(T)$$

with

- ► V_{CW}: *T*-independent one-loop Coleman-Weinberg potential
- ► V_{CT}: *T*-independent counterterm potential
- $V_{T}(T)$: one-loop thermal corrections at finite T

Effective potential at finite temperatures T

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_T(T)$$

with

- ► V_{CW}: *T*-independent one-loop Coleman-Weinberg potential
- ► V_{CT}: *T*-independent counterterm potential
- $V_T(T)$: one-loop thermal corrections at finite T

$$\overset{T \to \infty}{\sim} - \frac{\pi^2}{90} T^4 + \frac{1}{24} m_k^2 T^2 - \frac{1}{12\pi} m_k^3 T + \dots$$

Effective potential at finite temperatures T

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_T(T)$$

with

- ► V_{CW}: *T*-independent one-loop Coleman-Weinberg potential
- ► V_{CT}: *T*-independent counterterm potential
- $V_{\tau}(T)$: one-loop thermal corrections at finite T

$$\overset{T \to \infty}{\sim} - \frac{\pi^2}{90} T^4 + \frac{1}{24} m_k^2 T^2 - \frac{1}{12\pi} m_k^3 T + \dots$$

Perturbative expansion becomes unreliable at high T

- ► Resum 'daisy' diagrams ('Arnold-Espinosa' method) to recover perturbativity
- ⇒ Mass eigenvalues obtain T-dependent contributions

Thermal evolution

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_T(T)$$

CW: Coleman-Weinberg potential CT: counterterm potential *T*: thermal corrections

Thermal evolution

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_T(T)$$

CW: Coleman-Weinberg potential CT: counterterm potential *T*: thermal corrections

In high-*T* **limit:** *T* dependence in V_{eff} from

 $m_{ii}^2(T) = m_{ii}^2 + c_i T^2$

for m_{11}^2 and m_{22}^2 and with

$$\begin{split} c_i &= \frac{1}{12} \left(3\lambda_i + 2\lambda_3 + \lambda_4 \right) + \frac{1}{16} \left(3g^2 + {g'}^2 \right) \\ &+ \delta_{i2} \frac{1}{12} \left(y_\tau^2 + 3y_b^2 + 3y_t^2 \right) \end{split}$$

including gauge and Yukawa couplings

Thermal evolution

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_T(T)$$

CW: Coleman-Weinberg potential CT: counterterm potential *T*: thermal corrections

Summary

Thermal evolution

Scan of the 2HDM parameter space

(1) Generate seed points at T = 0 and scan over parameter space around them

- = Points with a suitable trajectory for an intermediate CB phase in high-T limit
- SM VEV and Higgs mass v = 246.22 GeV and $m_h = 125.09$ GeV fixed at T = 0

Scan of the 2HDM parameter space

- (1) Generate seed points at T = 0 and scan over parameter space around them
 - = Points with a suitable trajectory for an intermediate CB phase in high-T limit
 - SM VEV and Higgs mass v = 246.22 GeV and $m_h = 125.09$ GeV fixed at T = 0
- (2) Locate the minima and evolve the VEVs for T > 0 for full one-loop effective potential including thermal corrections: BSMPT v2 [Basler, Mühlleitner, Müller '18-'21]

Scan of the 2HDM parameter space

- (1) Generate seed points at T = 0 and scan over parameter space around them
 - = Points with a suitable trajectory for an intermediate CB phase in high-T limit
 - SM VEV and Higgs mass v = 246.22 GeV and $m_h = 125.09$ GeV fixed at T = 0
- (2) Locate the minima and evolve the VEVs for T > 0 for full one-loop effective potential including thermal corrections: BSMPT v2 [Basler, Mühlleitner, Müller '18-'21]
- (3) Use ScannerS [Coimbra et al. '13-'20] to apply constraints to selected points:

Theoretical constraints: bounded-from-below, perturbativity, perturbative unitarity [Akeroyd, Arhrib, Naimi '00], absolute stability [Barroso, Ferreira, Ivanov, Santos '13]

Experimental constraints:

flavour physics, Higgs searches at colliders (Higgs{Signals/Bounds} [Bechtle et al. '08-'21]), STU-parameters [Peskin, Takeuchi '92]

Results of scan: benchmark points

Results of scan: benchmark points

Results of scan: benchmark points

9

Results of scan: parameter space

9

Results of scan: parameter space

Christoph Borschensky – Intermediate CB phases in the 2HDM

• 100 $\leq m_{H^{\pm}}/\text{GeV} \leq 210$

Intermediate CB phase:

•
$$m_{H^{\pm}} \approx m_A \text{ or } m_{H^{\pm}} \approx m_H$$

►
$$|\lambda_{\max}| \ge 4$$

EW symmetry restoration (EWSR) at high *T*: $|\lambda_{max}| \le 5$

Results of scan: parameter space

Intermediate CB phase:

► 100 $\leq m_{H^{\pm}}/\text{GeV} \leq 210$

•
$$m_{H^{\pm}} \approx m_A \text{ or } m_{H^{\pm}} \approx m_H$$

► $|\lambda_{\max}| \gtrsim 4$

EW symmetry restoration (EWSR) at high *T*: $|\lambda_{max}| \le 5$

- $\Rightarrow \text{ Possibility for } H \rightarrow AZ$ and $H \rightarrow H^{\pm}W^{\mp}$ decays
- CB phase + EWSR + constraints
- All points excluded by latest HiggsTools data [Bahl et al. '22]

Christoph Borschensky – Intermediate CB phases in the 2HDM

9

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections See JHEP02(2024)232 for more details!
- Difficult to satisfy all experimental constraints
- ▶ Found parameter space offers possibility for $H \rightarrow AZ$ and $H \rightarrow H^{\pm}W^{\mp}$ decays

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections See JHEP02(2024)232 for more details!
- Difficult to satisfy all experimental constraints
- ▶ Found parameter space offers possibility for $H \rightarrow AZ$ and $H \rightarrow H^{\pm}W^{\mp}$ decays
- CB phases occur only for relatively large couplings
- ← Restoration of EW symmetry at high temperatures requires small couplings

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections See JHEP02(2024)232 for more details!
- Difficult to satisfy all experimental constraints
- ▶ Found parameter space offers possibility for $H \rightarrow AZ$ and $H \rightarrow H^{\pm}W^{\mp}$ decays
- CB phases occur only for relatively large couplings
- Restoration of EW symmetry at high temperatures requires small couplings
- Latest Higgs collider data in HiggsTools [Bahl et al. '22] excludes found points...

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections See JHEP02(2024)232 for more details!
- Difficult to satisfy all experimental constraints
- ▶ Found parameter space offers possibility for $H \rightarrow AZ$ and $H \rightarrow H^{\pm}W^{\mp}$ decays
- CB phases occur only for relatively large couplings
- Restoration of EW symmetry at high temperatures requires small couplings
- Latest Higgs collider data in HiggsTools [Bahl et al. '22] excludes found points...

THANK YOU FOR YOUR ATTENTION! 🙂

