Searching for HWW anomalous couplings with simulation-based inference

Marta Silva (IST/LIP), Inês Ochoa (LIP), Patricia Muíño (IST/LIP), Ricardo Barrué (IST/LIP)

Extended Higgs Sector subgroup meeting

November 19, 2024

Motivation

One of the major questions left unaddressed by the SM is the **observed asymmetry between matter and antimatter in the Universe.**

Regarding the SM as a low-energy effective field theory (SMEFT):

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda} \sum_{i=1}^{N_{d5}} c_i^{(5)} \mathcal{O}_i^{(5)} + rac{1}{\Lambda^2} \sum_{i=1}^{N_{d6}} c_i^{(6)} \mathcal{O}_i^{(6)}$$

relevant for Higgs physics

- *c_i* Wilson Coefficients;
- *i* operators with the same SM symmetries

CP-odd operator:

$$\tilde{\mathcal{O}}_{WH} = \frac{c_{\tilde{WH}}}{\Lambda^2} H^{\dagger} H \tilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$$

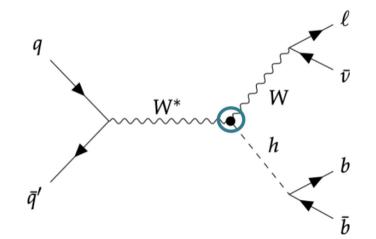
$$\mathcal{O}_{HW} = \frac{c_{HW}}{\Lambda^2} H^{\dagger} H W^{I}_{\mu\nu} W^{I\mu\nu}$$

Sources of charge-parity (CP) violation beyond the

SM (BSM) are required to explain this puzzle

The presence of CP-odd components in the Higgs boson couplings is predicted by many BSM theories

Goal: search for CP violation in the **HWW interaction via leptonic WH production:**



Simulation-based inference

The ultimate goal of an EFT analysis is to establish exclusion limits on the parameters of interest θ . $dz_s \int dz_p \left| p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta) \right|$ Need to construct the **Likelihood Function**: $p(x|\theta) =$ dz_d "How likely is an observation *x* described by the theory It's infeasible to calculate the integral parameter θ " over this enormous latent space Intractable Leads to likelihood-free (LFI) or simulation-based inference (SBI) likelihood Detector Shower Theory Parton-level **Observables** interactions splittings parameters momenta Z_{s} Z_d $Z_{\mathcal{D}}$ Monte Carlo (MC) simulation Inference

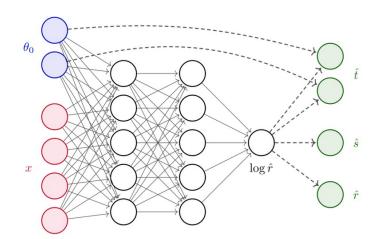
3

Addressing the likelihood intractability

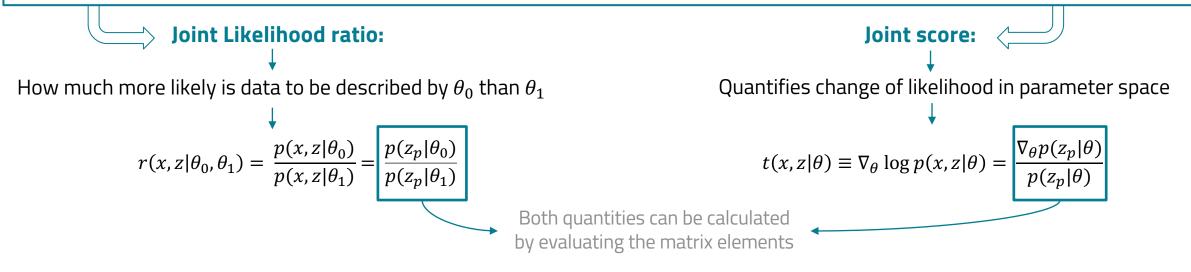
Classical methods rely on using one or two observables as summary statistics or approximations of the shower and detector effects

We propose using **neural networks** to estimate:

- The likelihood ratio, r(x)
- A locally optimal observable (score), t(x)



Data augmentation: additional information can be extracted from MC simulations and used to define loss functions that when minimized converge to the true likelihood ratio/score



arXiv:1805.00020

SALLY vs ALICE(S)

SALLY

Goal: learn a detector-level optimal observable **(score)** at the SM point

Requirements:

- Joint score
- Mean squared error loss function

A study of the SALLY sensitivity for $c_{H\widetilde{W}}$ was published in <u>JHEP04(2024)014</u> by R.Barrué (LIP)

Starting point for this study!

Problem: relies on the assumption that the parameter θ is close to the SM

ALICE

Goal: learn the likelihood ratio as a function of x and θ

Requirements:

- Joint likelihood ratio
- Improved cross-entropy loss function

ALICES

• **Goal:** learn the likelihood ratio as a function of x and θ

Requirements:

- Joint likelihood ratio
 - Joint score
 - Improved cross-entropy loss function

Analysis Overview

1. Event Generation (MadGraph):

Signal samples: WH($l\nu bb$); SMEFTsim3; $\Lambda = 1$ TeV

- LO reweighting + morphing technique to calculate event weights at any parameter point θ

Background samples: semileptonic $t\bar{t}$; single top *s*-channel; W + (b)-jets

observable

 $r(x, z|\theta)$

 $t(x, z|\theta)$

augmented data

2. Parton shower (Pythia8) and detector simulation (Delphes)

parameter (

latent 2

Simulation

- 3. Chose observables/inputs for NN
- 4. Data unweighting and augmentation
 - Drawn from MC samples with probabilities proportional to the event weights

 θ_{j}

 $\hat{r}(x|\theta)$

approximate likelihood

ratio

 $\arg \min L[g] \longrightarrow$

Machine Learning

5. Train a Neural Network with a suitable loss function

- Ensembles of 5 NNs for the **SALLY**, **ALICE**, and **ALICES** methods

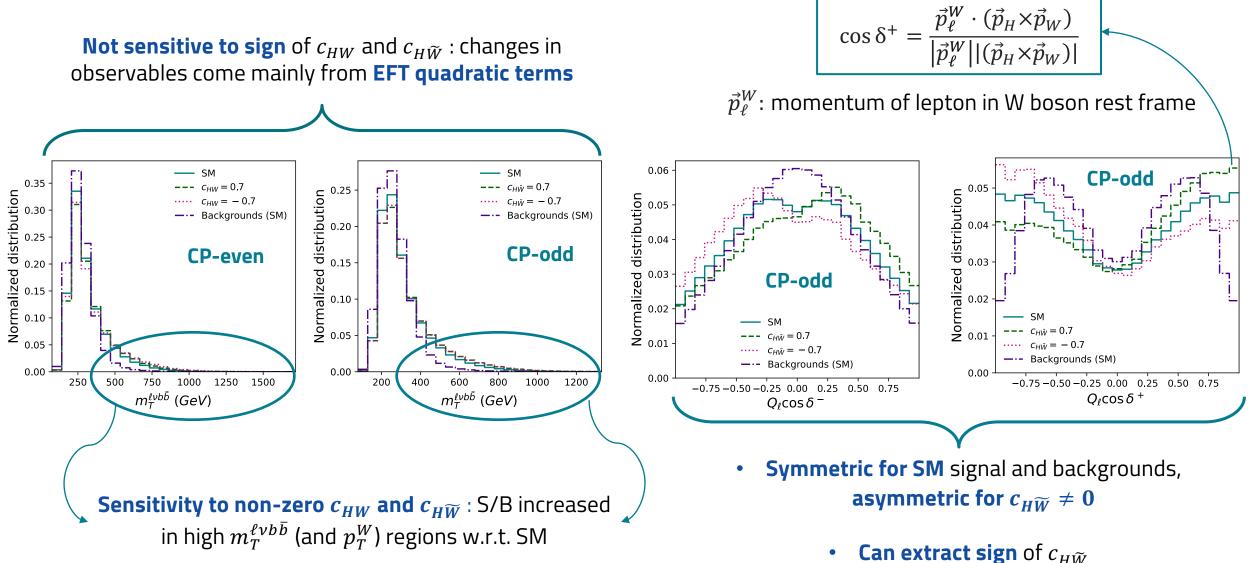
 θ_i

Inference

6

6. Set limits on θ

Energy-dependent and angular observables



EFT scenarios studied

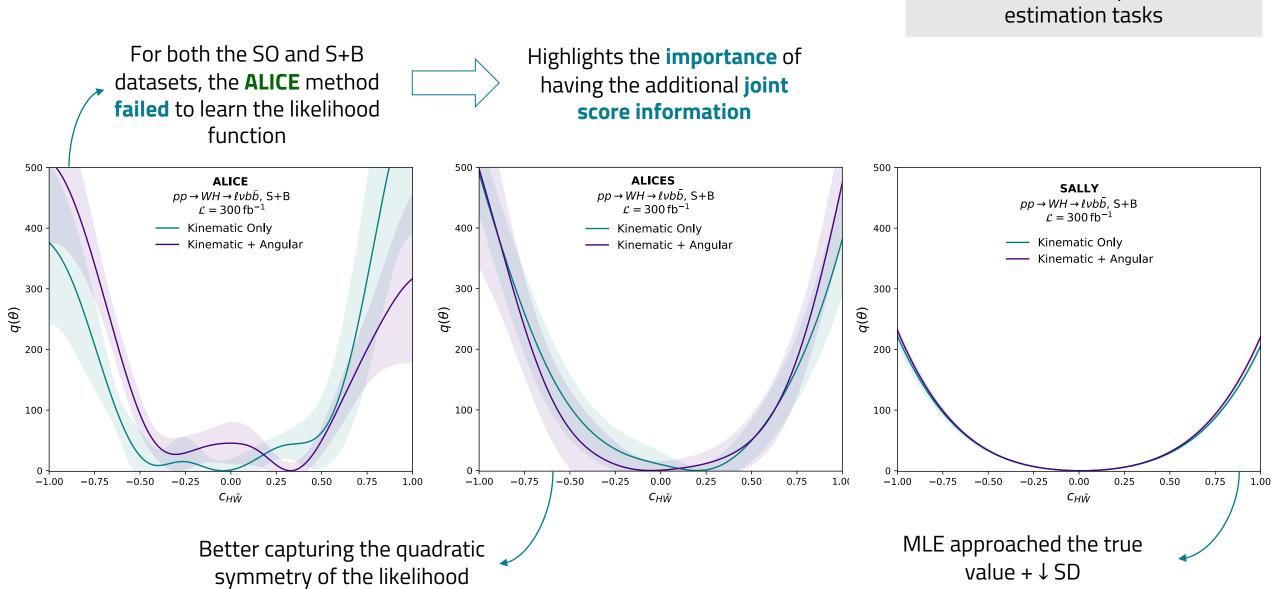
- **1D studies:** $c_{H\widetilde{W}}$ and c_{HW} <u>independently</u> <u>constrained</u>
- **2D studies:** <u>both coefficients</u> were used as inputs to the NNs

Input variables to the Neural Networks:

• E, p_x, p_y, p_z of final state particles; • p_T, η, θ, ϕ of final state particles; • x and y componentes + absolute value of E_T^{miss} • $\Delta \phi$ and ΔR between relevant objects • m_{bb} • $Q_\ell \cos \delta^+$ and $Q_\ell \cos \delta^-$ • p_z^{ν}

Benchmarks for the ML methods:

• $Q_{\ell} \cos \delta^+$, $m_T^{\ell \nu b \overline{b}}$, $Q_{\ell} \cos \delta^+ \otimes m_T^{\ell \nu b \overline{b}}$



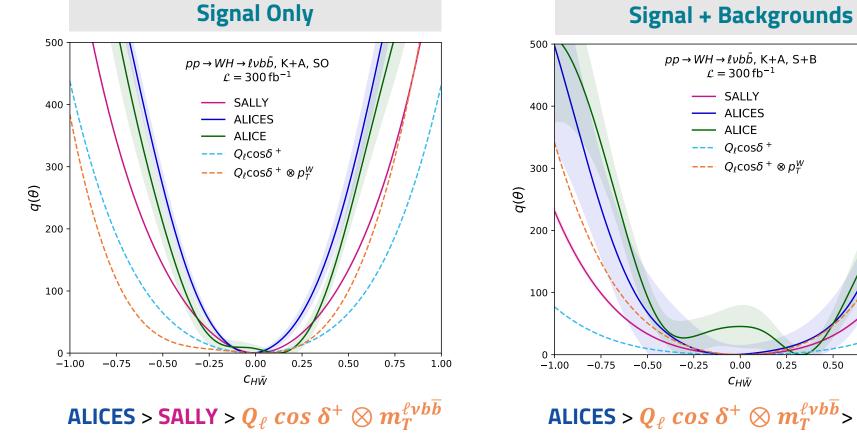
The effect of the angular observables

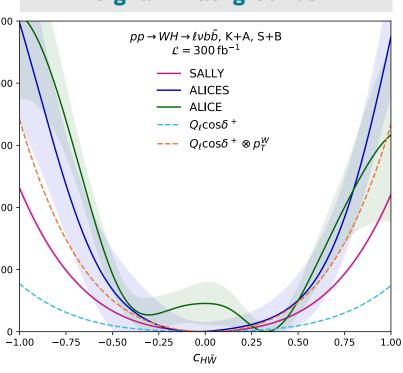
Overall, including the angular observable helped the estimation tasks

1D studies: CP-odd results

- **SALLY** and **ALICES** <u>outperform</u> the $Q_{\ell} \cos \delta^+$ histogram ٠
- ALICES provides tighter limits than SALLY •

Trade-off: ↑ variance + MLEs sometimes ≠ SM

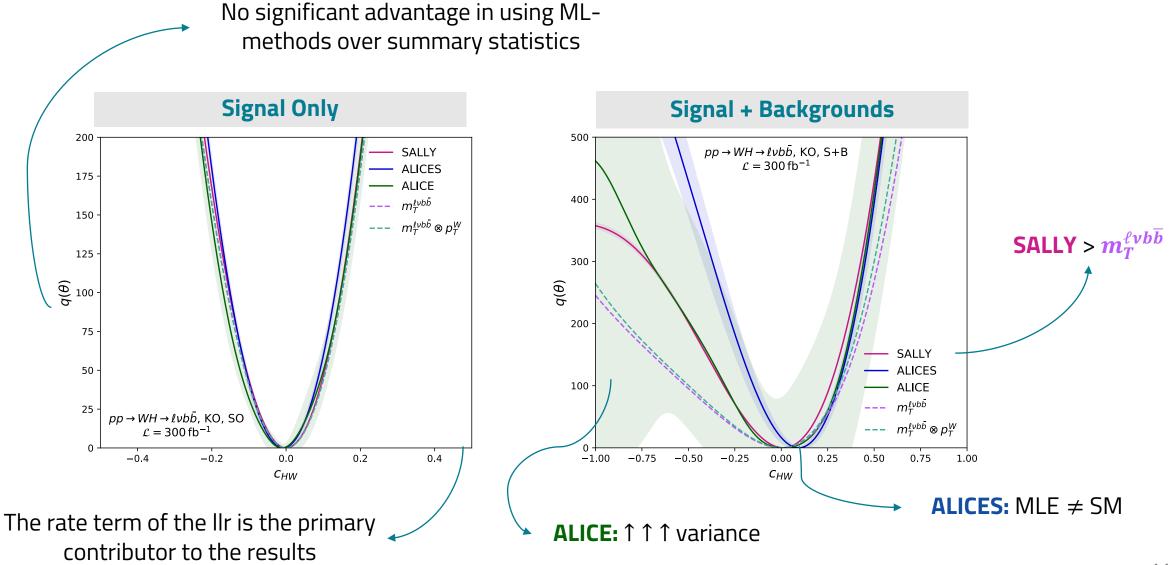




ALICES > $Q_{\ell} \cos \delta^+ \otimes m_T^{\ell \nu b \overline{b}}$ > SALLY

1D studies: CP-even results

The SALLY method yields the most reliable outcomes



2D studies: results

Once again, for both datasets, the ML-methods yielded tighter limits than the best ones obtained with a 1D summary statistic. .

ALICES

SALLY

 $m_{\tau}^{\ell \nu b \overline{b}}$

 $O_{\ell} \cos \delta^{+}$ -

 $Q_{\ell} \cos \delta^+ \otimes p_T^W$

 $pp \rightarrow WH \rightarrow lvb\bar{b}$

 $\mathcal{L} = 300 \, \text{fb}^{-1}$

Asimov data

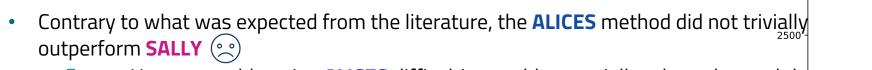
Signal Only

2000

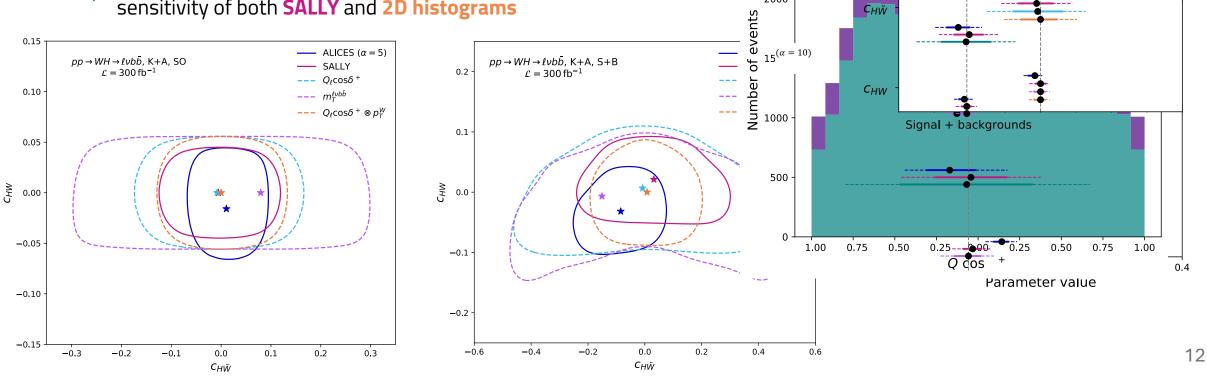
68% CL ____ 95% CL

Best-fit, 2D

- The results from the **SALLY** method were **similar** to those from the **2D histogram**... ٠
 - > ... but SALLY can probe many couplings simultaneously!

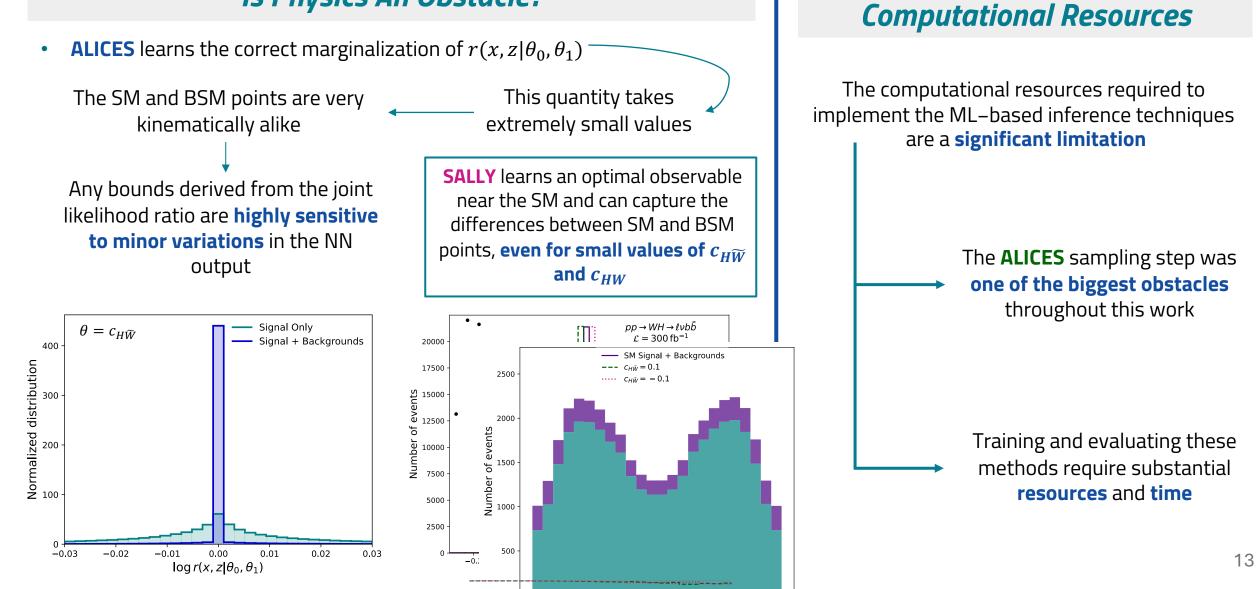


However, addressing ALICES difficulties could potentially take us beyond the sensitivity of both **SALLY** and **2D histograms**



Major Challenges

Is Physics An Obstacle?



The Demand for More Powerful

- As Run 3 advances, the application of ML-based inference methods, such as ALICES and SALLY, **are very promising** in probing HWW anomalous couplings with higher sensitivity and precision.
 - These techniques offer the potential to **improve upon the traditional methods and current results from the ATLAS and CMS collaborations.**
- The advantages of these techniques come with the **trade-off of increased complexity** and **resource demands**.
 - Large amounts of training data are needed to effectively train Neural Networks.
 - Converging to the true likelihood ratio can be difficult when BSM signals are similar to SM ones.
- This work highlights the importance of **addressing the shortcomings of these techniques** (e.g. training stability and computational efficiency) to fully realize their potential.

Future Work

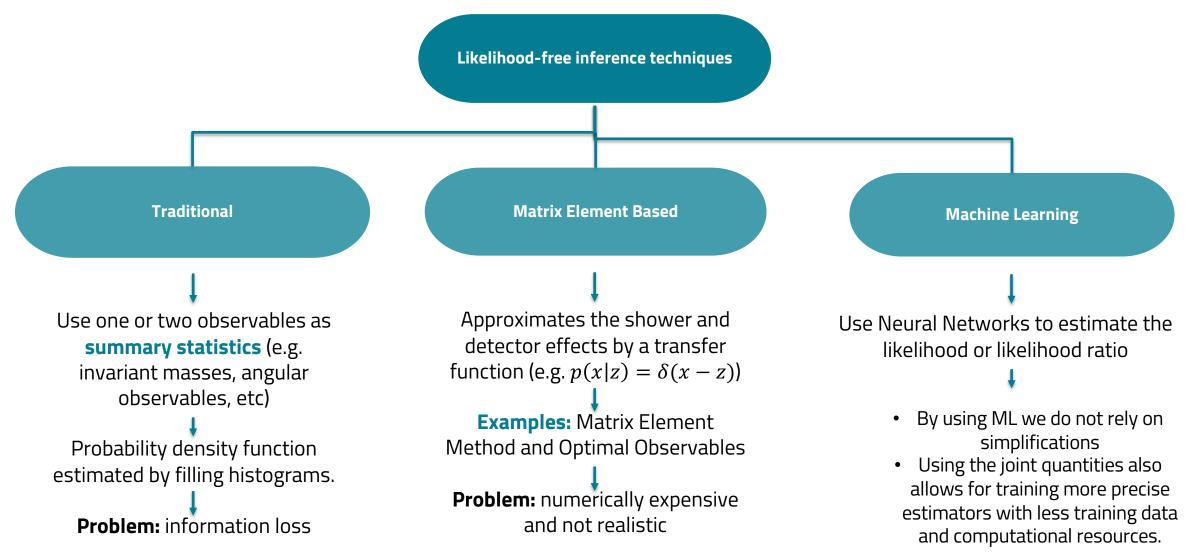
- Repeating this study in a higher p_T region ٠
 - Increased sensitivity to BSM couplingsIncreased signal-to-background ratio
- Training and evaluating these methods are very computationally demanding ٠

We are applying for special access to HPC+GPUs

Any questions?

Backup

Classical methods to constrain EFTs



Morphing Technique

Generating samples for each possible parameter θ is extremely time-consuming and impractical.

> **Solution:** Morphing technique to calculate event weights at any parameter point

The morphing tecnhique relies on the fact that the matrix element squared is a polynomial function of the theory paramater (the Wilson coefficient):

$$|\mathcal{M}|^2 = \sum_{k=0}^{3} c_k A_k = \vec{c} \cdot \vec{A}, \text{ with } \vec{c} = \{1, c, c^2\} \text{ and } \vec{A} = (A_0, A_1, A_2)$$

Example: Measurement of a single BSM parameter

$$|\mathcal{M}|^{2}\left(z_{p} \mid \theta\right) = \underbrace{1}_{w_{0}\left(\theta\right)} \underbrace{|\mathcal{M}_{SM}|^{2}\left(z_{p}\right)}_{f_{0}\left(z_{p}\right)} + \underbrace{\theta}_{w_{1}\left(\theta\right)} \underbrace{2\operatorname{Re}\,\mathcal{M}_{SM}^{\dagger}\left(z_{p}\right)\mathcal{M}_{BSM}\left(z_{p}\right)}_{f_{1}\left(z_{p}\right)} + \underbrace{\theta^{2}}_{w_{2}\left(\theta\right)} \underbrace{|\mathcal{M}_{BSM}|^{2}\left(z_{p}\right)}_{f_{2}\left(z_{p}\right)}$$

By simulating samples from different values of c, one can write a vector of squared matrix elements $|M|^2_{simulated}$ which depend on the coupling values c via a morphing matrix C:

$$|\mathcal{M}|^2_{\text{simulated}} = C \times \vec{A}, \text{ with } C = \left[\vec{c}_{\text{Sample 1}}, \vec{c}_{\text{Sample 2}}, \ldots\right]$$

If the number of simulated samples is equivalent to the dimensionality of \vec{A} , the above relation \bar{c} and be inverted and one can calculate the matrix element for any coupling value as a linear combination of the previously simulated matrix elements:

$$|\mathcal{M}|^{2} = \vec{c} \cdot \vec{A} = \vec{c} \cdot \left(\vec{C}^{-1} \cdot |\vec{\mathcal{M}}|^{2}_{\text{simulated}}\right) = \sum_{j} \underbrace{\left(\vec{C}_{j}^{-1} \cdot \vec{c}\right)}_{w_{j}(\vec{c})} |\mathcal{M}|_{j}^{2}$$

Morphing weights that can be used to interpolate to any parameter point

Additional formulas

Full likelihood function:
$$p_{\text{full}}(x|\theta) = \text{Pois}(n|L\sigma(\theta)) \prod_{i} p(x_i|\theta)$$
, where $Pois(n|\lambda) = \lambda^n e^{-\lambda}/n!$
observed number of events Cross section

Joint Likelihood ratio:

$$r(x,z|\theta_0,\theta_1) \equiv \frac{p(x,z|\theta_0)}{p(x,z|\theta_1)} = \frac{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_0)}{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta_1)}$$
$$= \frac{p(z_p|\theta_1)}{p(z_p|\theta_0)} = \frac{d\sigma(z_p|\theta_0)}{d\sigma(z_p|\theta_1)}\frac{\sigma(\theta_1)}{\sigma(\theta_0)}$$

Joint score:

$$t(x, z|\theta) \equiv \nabla_{\theta} \log p(x, z|\theta) = \frac{p(x|z_d)p(z_d|z_s)p(z_s|z_p)\nabla_{\theta}p(z_p|\theta)}{p(x|z_d)p(z_d|z_s)p(z_s|z_p)p(z_p|\theta)}$$
$$= \frac{\nabla_{\theta} d\sigma(z_p|\theta)}{d\sigma(z_p|\theta)} - \frac{\nabla_{\theta} \sigma(\theta)}{\sigma(\theta)}$$

Parton-level event weights:

$$d\sigma(z_p|\theta) = \frac{(2\pi)^4 f_1(x_1, Q^2) f_2(x_2, Q^2)}{8x_1 x_2 s} |\mathcal{M}|^2(z_p|\theta) d\Phi(z_p).$$

LO reweighting:

$$w_{\text{new}} = \frac{\left|\mathcal{M}_{\text{new}}\right|^2}{\left|\mathcal{M}_{\text{orig}}\right|^2} w_{\text{orig}}$$

The likelihood ratio trick

• Consider samples x_i simulated under both hypotheses with labels y_i

• Find function
$$s(x)$$
 that minimizes binary cross-entropy
• $L[s] = -\frac{1}{N} \sum_{i} (y_i \log s(x_i) + (1 - y)\log(1 - s(x_i)))$

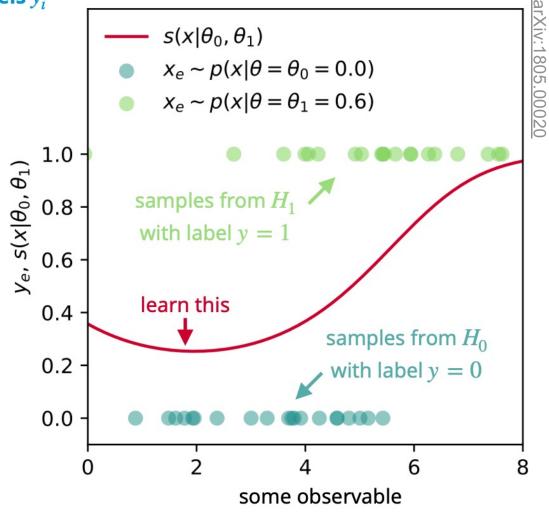
• A solution to that is $s(x \mid \theta_0, \theta_1) = \frac{p(x \mid \theta_1)}{p(x \mid \theta_0) + p(x \mid \theta_1)}$

We can find this function with standard ML methods

• Then:
$$r(x \mid \theta_1) = \frac{p(x \mid \theta_1)}{p(x \mid \theta_0)} = \frac{s(x \mid \theta_0, \theta_1)}{1 - s(x \mid \theta_0, \theta_1)}$$

• We can learn the optimal observable with ML 🗸

• without ever knowing $p(x \mid \theta_i)$ directly (!)



SALLY (Score Approximates Likelihood LocallY)

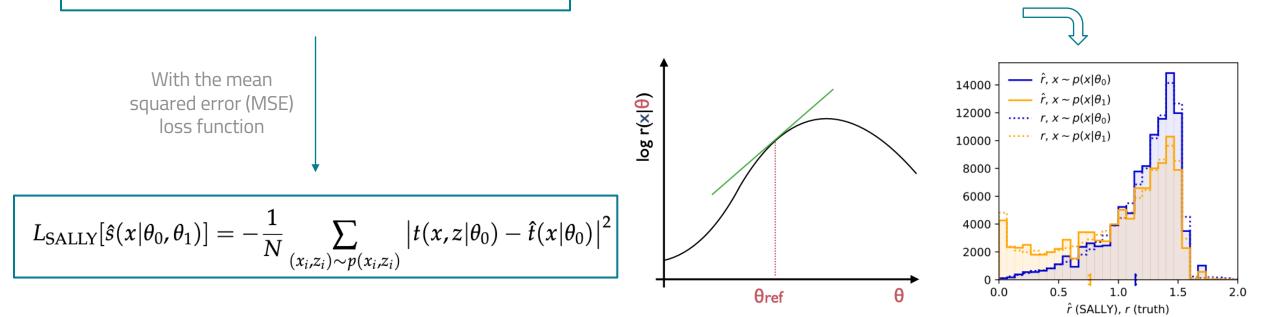
Score Estimator (SALLY):

- **Goal:** learn score as a function of x at θ_{SM}
- Uses joint score $t(x, z | \theta_{ref})$:

 $NN: x \to \hat{t}(x) \approx \nabla_{\theta} \log(x|\theta)|_{\theta_{SM}}$

Close to the Standard Model:

- The score is the sufficient statistics.
- Knowing $t(x)|_{\theta_{SM}}$ is as powerful as knowing $r(x|\theta)$.
- SALLY is a machine-learning version of an Optimal Observable.
- Can be used to fill histograms for different hypotheses and calculate likelihood ratios from them.



ALICES (Approximate Likelihood with Improved Cross-entropy Estimator and Score)

Likelihood Ratio Estimator (ALICES):

With the improved cross-entropy

loss function

- **Goal:** learn likelihood ratio as a function of x and θ
- Uses joint likelihood ratio $r(x, z|\theta)$ and joint score $t(x, z|\theta)$:

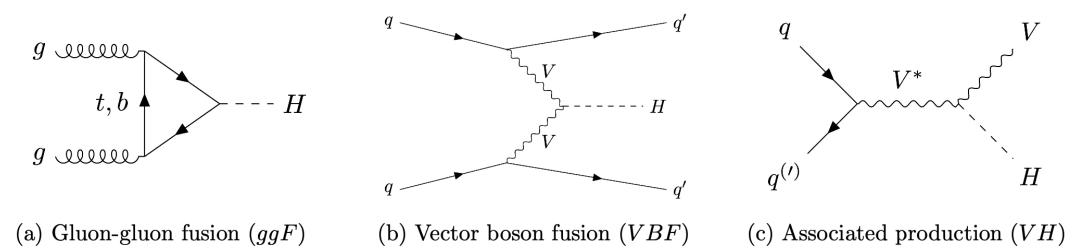
 $NN: (x,\theta) \to \hat{r}(x|\theta) \approx p(x|\theta)/p(x|\theta_{SM})$

The ALICE/ALICES methods are expected to exhibit superior performance:

- They use the complete event information for reconstructing the likelihood ratio
- Do not rely on the assumption that the parameter $\boldsymbol{\theta}$ is close to the SM
- According to the literature, cross-entropy losses are expected to have lower variance and increased robustness to outliers compared to the standard cross-entropy loss or the Mean Squared Error loss.

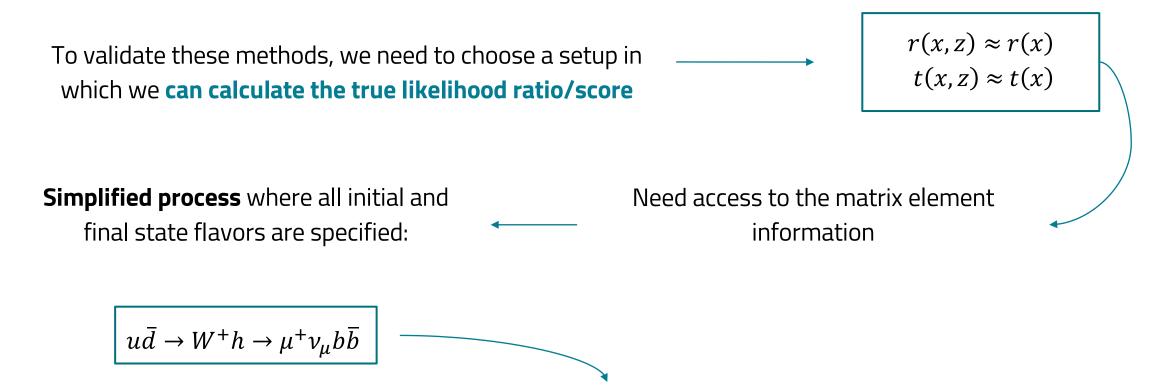
ALICE

HWW interaction vertex



- VBF does not allow access to the HWW vertex independently of the HZZ vertex.
- Regarding the $H \rightarrow WW$ decay:
 - Exhibits lower sensitivity due to the Higgs boson being always on-shell.
 - The invariant mass of the WW system must always match the mass of the Higgs, constraining the energy transfer to particles in the final state.
 - Involves two neutrinos in the final state, posing a significant challenge.

Parton-level validation study



10⁶ events generated at the SM point + <u>200k events generated at the other 2 benchmarks (BSM points)</u>

Reweighting to far-away points in parameter space can lead to large event weights and thus large statistical fluctuations

Monte Carlo samples

- WH(lvbb) signal samples; MadGraph and SMEFTsim3; $\Lambda = 1$ TeV
 - Signal events generated at $(c_{HW}, c_{HW}) = (0,0)$ and reweighted to obtain event weights for benchmark points
 - Maximum range used in the morphing basis optimization: $|c_{HW}| \le 1.2$; $|c_{HW}| \le 1.0$
- $\frac{1}{5}$ of the signal samples were directly generated at the benchmark points to mitigate large statistical fluctuations that can arise from reweighting events to distance points in parameter space
- No reweighting or morphing was applied to the background samples

Optimized morphing basis points

	Validation	1D (CP-odd)	1D (CP-even)	21)
Coefficient	$c_{H\tilde{W}}$	$c_{H\tilde{W}}$	c_{HW}	$c_{H\tilde{W}}$	c_{HW}
Benchmark 1	1.150	1.150	0.940	-0.902	0.420
Benchmark 2	-1.035	-1.035	-0.972	-0.234	0.970
Benchmark 3	-	-	-	-1.120	-0.764
Benchmark 4	-	-	-	0.720	-0.873
Benchmark 5	-	-	-	1.150	0.630

Number of generated events

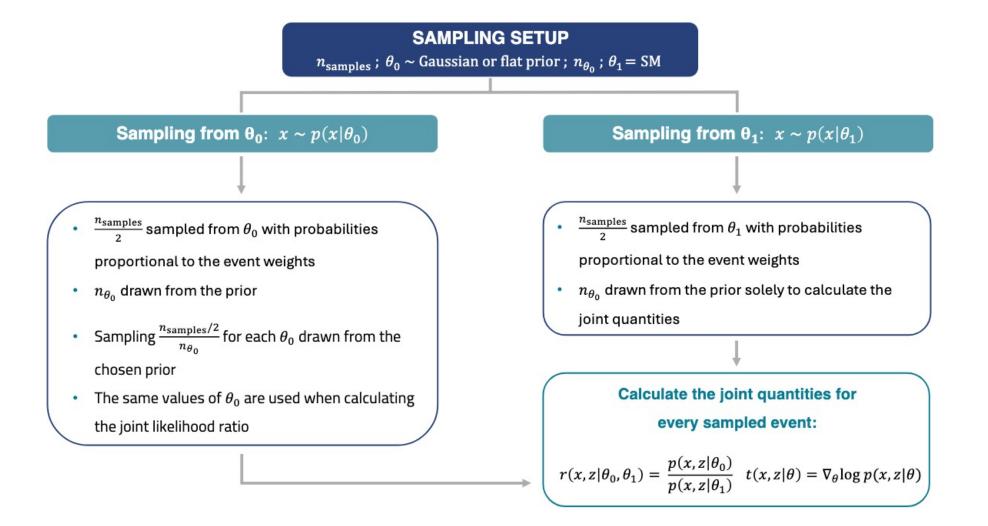
	Validation	1D (CP-odd)	1D (CP-even)	2D
SM Signal	$1.0 imes 10^6$	$4.0 imes 10^6$	$4.0 imes 10^6$	$8.0 imes10^6$
Backgrounds	-	$6.0 imes 10^6$	$6.0 imes 10^6$	12.0×10^6
BSM Signal	$0.2 imes 10^6$	$1.6 imes 10^6$	1.6×10^6	$8.0 imes10^6$
Total	$1.2 imes 10^6$	11.6×10^6	11.6×10^6	28.0×10^6

Event selection

Observable	Cut	
Transverse momentum of lepton/light quarks (charm or lighter)	$p_{T,\ell}, p_{T,j} > 10 \text{ GeV}$	
Missing transverse energy	$E_T^{ m miss}>25~{ m GeV}$	
Transverse momentum of <i>b</i> -quarks	$p_{T,b} > 35 \; { m GeV}$	Generator-level
Pseudorapidity of charged lepton, b-quarks and light quarks	$ \eta_{\ell,b,j} < 2.5$	cuts
Angular distance between decay particles	$\Delta R_{bb,b\ell,bj,\ell j,jj} > 0.4$	
Invariant mass of b-quark pair	$80 \; {\rm GeV} < m_{bb} < 160 \; {\rm GeV} \checkmark$	
Transverse momenta of light quarks	$p_{T,j} < 30~{ m GeV}$	

	Cut	Signal (SM)	$t\overline{t}$	W+ jets	Single top
	$p_{T,\ell}, p_{T,j} > 10~{ m GeV}$	96.77	87.12	93.83	93.83
	$E_T^{ m miss}>25~{ m GeV}$	76.17	70.03	56.17	74.41
Cumulative	$p_{T,b} > 35~{ m GeV}$	50.05	52.08	1.91	50.6
efficiencies (in %)	$ \eta_{\ell,b,j} < 2.5$	35.42	39.14	1.25	35.01
	$\Delta R_{bb,b\ell,bj,\ell j,jj} > 0.4$	34.18	36.46	0.99	33.9
	\sim 80 GeV $< m_{bb} < 160$ GeV	34.31	13.2	0.46	11.39
	$p_{T,j} < 30~{ m GeV}$	34.25	0.28	0.46	11.38

ALICES sampling

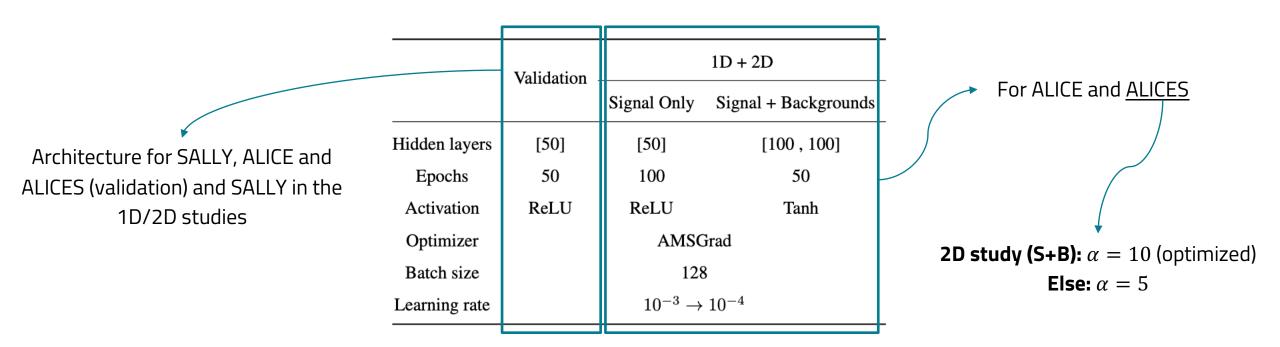


Sampling Setup for each EFT scenario

	Validation		1D (CP-odd)		1D (CP-even)		2D	
	, undurion	Signal Only	Signal + Backgrounds	Signal Only	Signal + Backgrounds	Signal Only	Signal + Backgrounds	
$n_{\rm samples}$	10^{6}	$5 imes 10^6$	10^{7}	$5 imes 10^6$	10^{7}	$5.5 imes 10^6$	$11.5 imes 10^6$	
Prior	Gaussian ($\mu = 0, \sigma = 0.4$)	Gaussian ($\mu = 0, \sigma = 0.4$)		Gaussian ($\mu = 0, \sigma = 0.3$)		Gaussian ($\mu = 0, \sigma = 0.4$)		
11101	or Uniform $([-1.2, 1.2])$					and Gaussian ($\mu = 0, \sigma = 0.3$)		
$n_{ heta_0}$	1000 and 10000	10000		10000 + 10000				

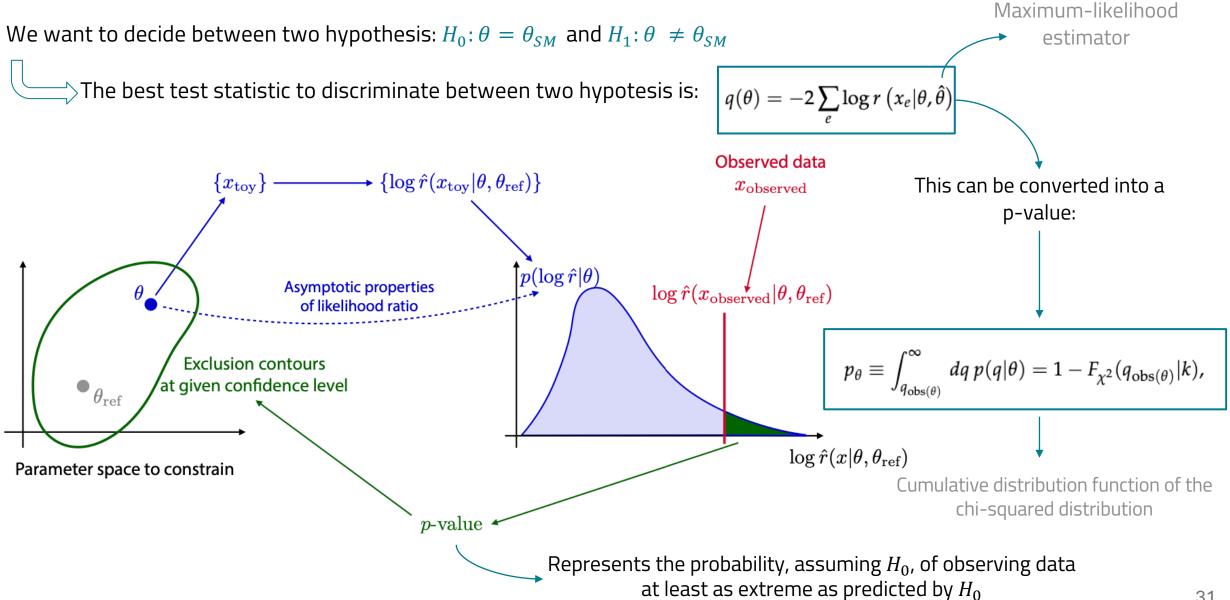
Training settings

• Training dataset defined as 80% of the total generated samples and further split into 75% for training and 25% for validation.



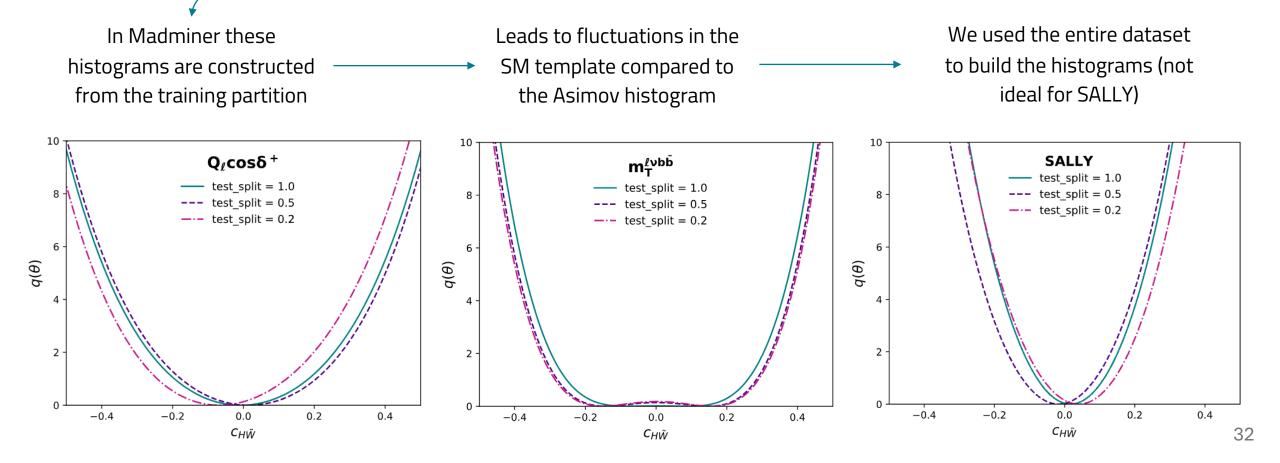
- Standardize inputs (zero mean + unit variance)
- Early stopping
- Ensemble of 5 NNs —— makes the predictions more robust to different random seeds
- Different unweighted dataset for training each NN ensemble variance reflects the uncertainty in the NN outputs due to finite training sample sizes

Setting Limits



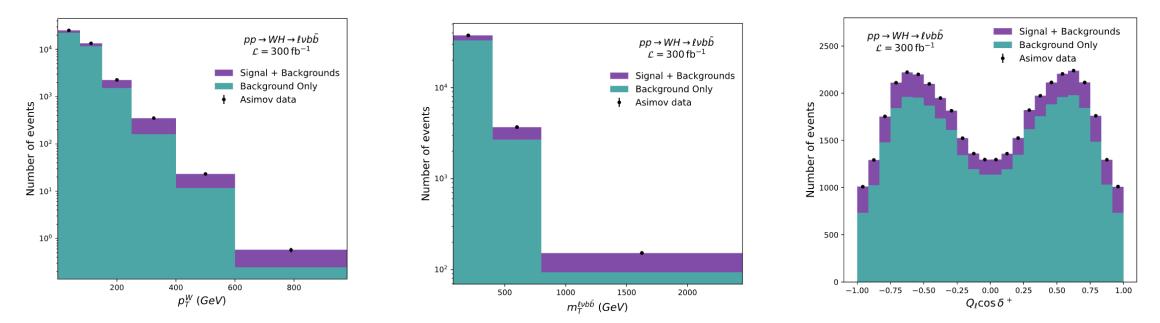
Asymptotic limits in Madminer

- p-values calculated using an Asimov dataset build from the test partition.
 - For ALICES, the NN is evaluated for multiple values of θ and the rate information is added
 - For SALLY, inference is performed similarly to histograms of summary statistics



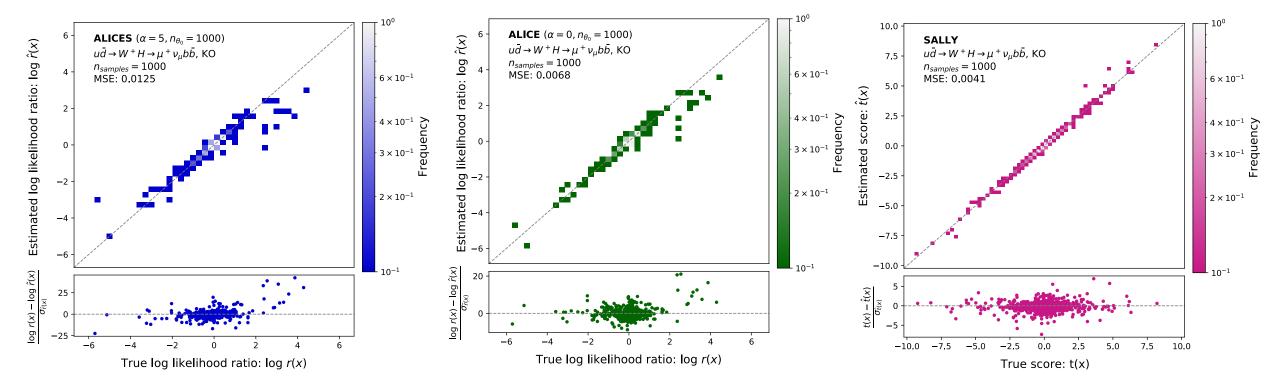
Binning & likelihood scans

- SALLY and $Q_{\ell} \cos \delta^+ 25$ bins
- p_T^W (bins) = $(0 75, 75 150, 150 250, 250 400, 400 600, 600 \infty)$ GeV
- $m_T^{\ell \nu b \bar{b}}$ (bins) = (0 400, 400 800, 800 ∞) GeV
- c_{HW} scanned over [-1.2,1.2] and c_{HW} over [-1.0,1.0] using 303 points across these ranges. For the 2D studies, 35 points were considered in each direction.
- Likelihood fits interpolated using spline functions



Validation at parton-level (I)

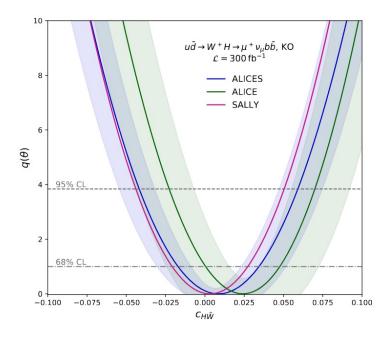
- An ensemble of 5 NN was trained using the SALLY, ALICE, and ALICES methods, and the Mean Squared Error (MSE) was used to compare each method's sensitivity.
- The estimated quantities closely align with the true values, confirming that these inference techniques yield reliable results (at least in the truth-level scenario).



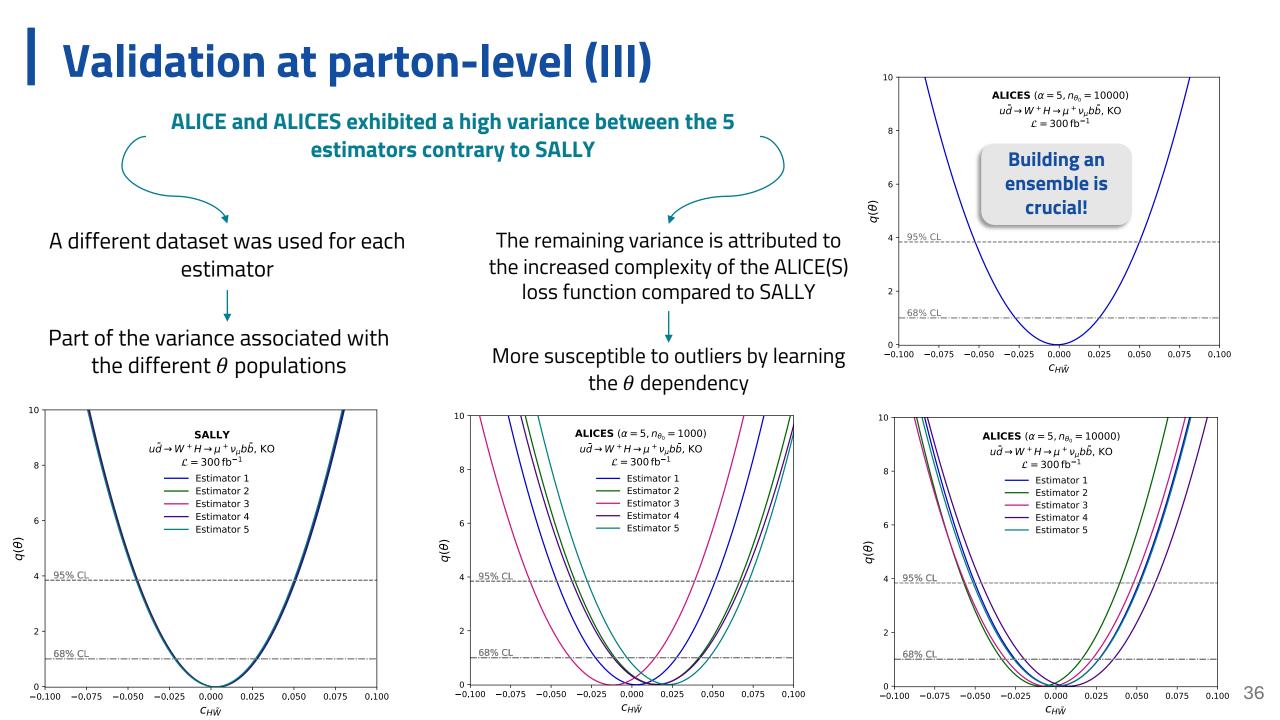
- The ALICES and ALICE MSE were consistently higher when using a Uniform Prior in the sampling.
 - A Gaussian Prior was chosen for the subsequent studies

Validation at parton-level (II)

MOD
MSE
0.0041
0.0125
0.0068
0.0523
0.0167
(

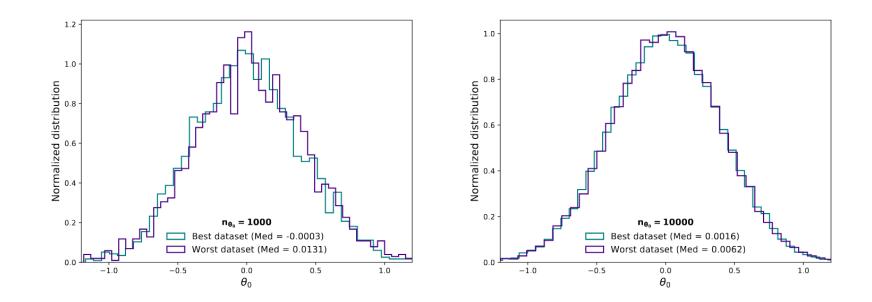


Method	Central value	SD	68% CL	95% CL
SALLY	0.002	0.001	[-0.022, 0.026]	[-0.046, 0.050]
ALICES ($\alpha=5, n_{ heta_0}=1000$) w/ Gaussian ($\mu=0, \sigma=0.4$)	0.010	0.229	[-0.019, 0.034]	[-0.043, 0.058]
ALICE ($\alpha = 0, n_{\theta_0} = 1000$) w/ Gaussian ($\mu = 0, \sigma = 0.4$)	0.024	0.572	[0.000, 0.046]	[-0.024, 0.070]

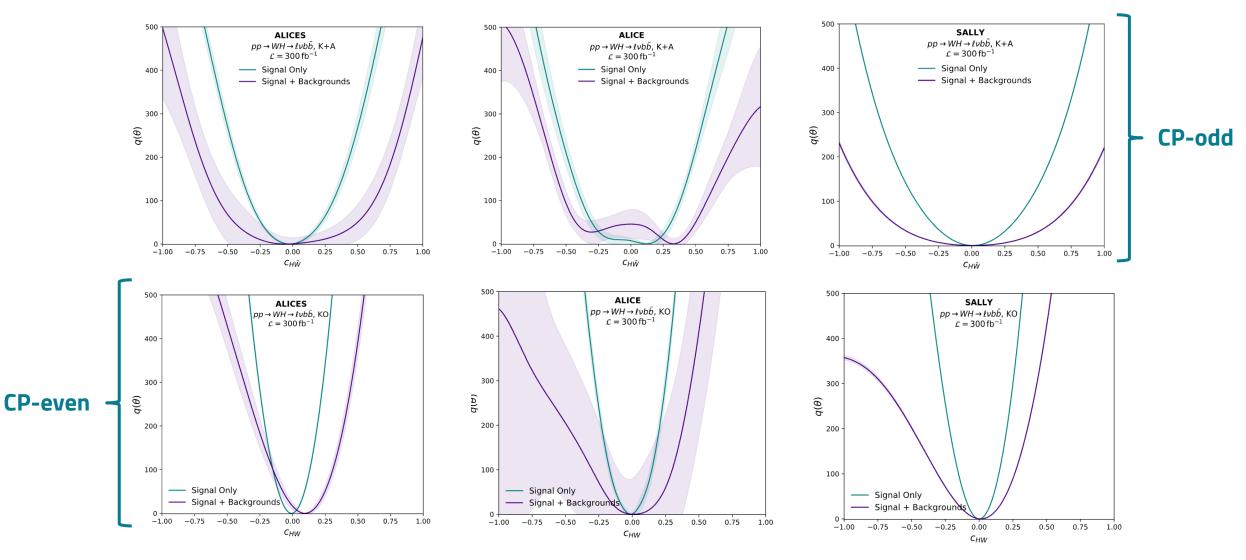


Validation at parton-level (IV)

ALICES w/ Gaussian(0,0.4)	Central value	SD	68% CL	95% CL
$n_{ heta_0}=1000$, 5 datasets	0.010	0.229	[-0.019, 0.034]	[-0.043, 0.058]
$n_{\theta_0} = 1000$, <i>best dataset</i> (med = -0.0003)	-0.002	0.093	[-0.029, 0.024]	[-0.053, 0.048]
$n_{\theta_0} = 1000$, <i>worst dataset</i> (med = 0.0131)	0.007	0.034	[-0.019, 0.029]	[-0.043, 0.053]
$n_{ heta_0}=10000$, 5 datasets	-0.002	0.056	[-0.029, 0.024]	[-0.053, 0.048]



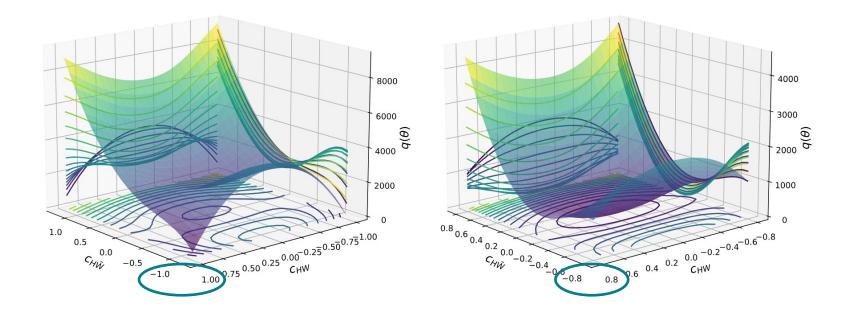
1D results – signal only vs signal + backgrounds



1D results – extra results (II)

			w	ilson Coefficient: c_H	Ŵ			
Method	Signal Only				Signal + Backgrounds			
Method	Central value	SD	68% CL	95% CL	Central value	SD	68% CL	95% CL
$Q_\ell \cos \delta^+$	-0.002	-	[-0.074,0.070]	[-0.142, 0.137]	-0.005	-	[-0.194,0.182]	[-0.348, 0.343]
$Q_\ell \cos \delta^+ \otimes p_T^W$	0.038	-	[-0.046, 0.103]	[-0.156, 0.158]	0.012	-	[-0.072, 0.094]	[-0.151, 0.170]
				Kinematic Only				
ALICES	0.019	0.120	[-0.014, 0.050]	[-0.046, 0.082]	0.202	6.700	[0.149, 0.247]	[0.091, 0.288]
ALICE	0.132	14.213	[0.089, 0.166]	[0.024, 0.197]	-0.043	15.711	[-0.084, -0.005]	[-0.122, 0.034]
SALLY	0.007	0.000	[-0.036, 0.050]	[-0.077, 0.091]	0.012	0.011	[-0.094, 0.113]	[-0.187, 0.209]
			Kinem	atic + Angular Obser	vables			
ALICES	-0.024	0.368	[-0.058, 0.010]	[-0.089, 0.043]	-0.053	15.824	[-0.120, 0.022]	[-0.180, 0.110]
ALICE	0.120	3.179	[0.086, 0.149]	[0.046, 0.178]	0.329	12.647	[0.302, 0.350]	[0.278, 0.372]
SALLY	0.007	0.000	[-0.038, 0.048]	[-0.079, 0.089]	0.007	0.004	[-0.096, 0.110]	[-0.190, 0.204]
			w	ilson Coefficient: c_H	W			
Method Signal Only			Signal + Backgrounds					
Wethou	Central value	SD	68% CL	95% CL	Central value	SD	68% CL	95% CL
$m_T^{\ell \nu b \bar{b}}$	0.000	-	[-0.017, 0.014]	[-0.031, 0.029]	0.000	-	[-0.041, 0.036]	[-0.079, 0.072]
$m_T^{\ell\nu b\bar{b}}\otimes p_T^W$	0.000	-	[-0.017, 0.014]	[-0.031, 0.029]	0.000	-	[-0.038, 0.036]	[-0.074, 0.070]
				Kinematic Only				
ALICES	-0.007	0.098	[-0.024, 0.005]	[-0.036, 0.019]	0.094	0.724	[0.070, 0.115]	[0.048, 0.137]
ALICE	-0.012	2.817	[-0.026, 0.002]	[-0.041, 0.017]	0.012	82.855	[-0.029, 0.050]	[-0.065, 0.086]
SALLY	0.000	0.000	[-0.017, 0.014]	[-0.031, 0.029]	0.012	0.023	[-0.017, 0.038]	[-0.046, 0.062]

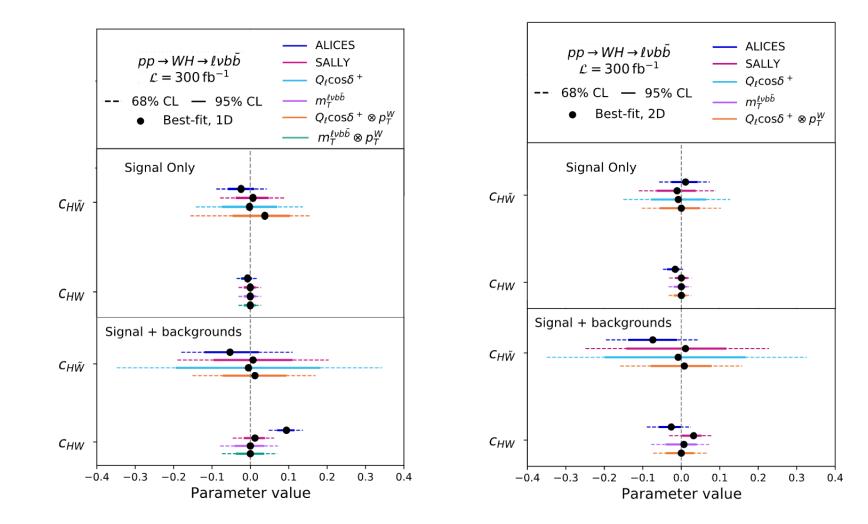
3D likelihood surfaces (ALICES)



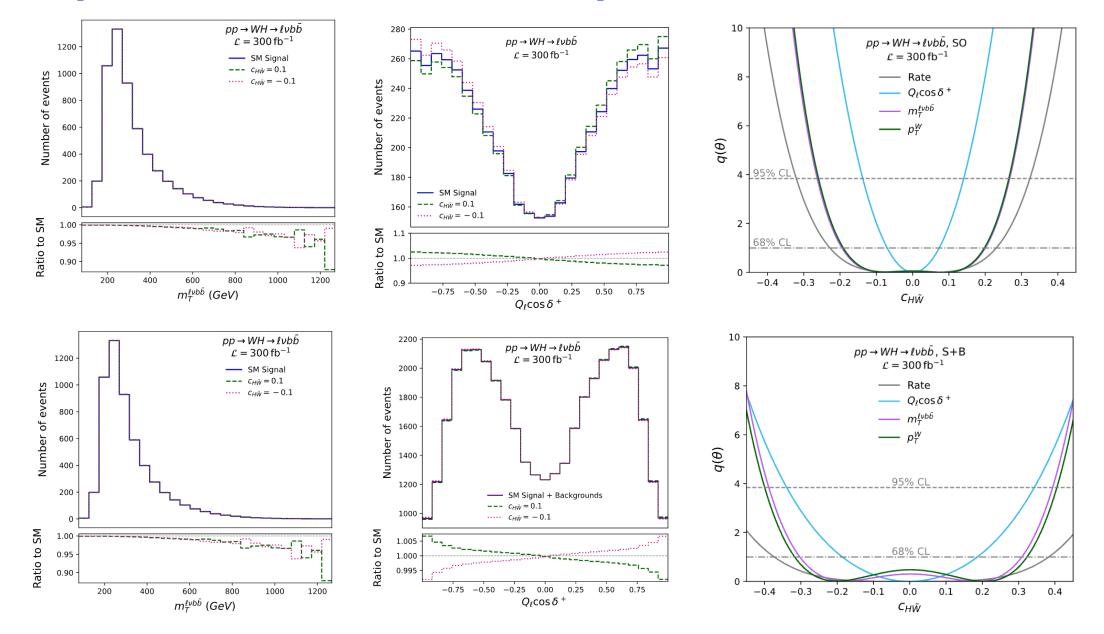
2D results – extra results (I)

			Wi	llson Coefficient: c_H	Ĩ			
Method	Signal Only			Signal + Backgrounds				
	Central value	SD	68% CL	95% CL	Central value	SD	68% CL	95% CL
$Q_\ell \cos \delta^+$	-0.008	-	[-0.079, 0.064]	[-0.151, 0.127]	-0.008	-	[-0.199, 0.167]	[-0.350, 0.326]
$Q_\ell \cos \delta^+ \otimes p_T^W$	0.000	-	[-0.056, 0.048]	[-0.103, 0.103]	0.008	-	[-0.079, 0.079]	[-0.159, 0.159]
			Kinem	atic + Angular Obser	vables			
ALICES	0.011	1.595	[-0.026, 0.042]	[-0.058, 0.074]	-0.074	9.670	[-0.138, -0.011]	[-0.196, 0.048]
SALLY	-0.011	0.041	[-0.064, 0.037]	[-0.111, 0.090]	-0.011	1.384	[-0.143, 0.117]	[-0.249, 0.228]
			Wi	llson Coefficient: c_{HV}	W			
Method	Signal Only			Signal + Backgrounds				
	Central value	SD	68% CL	95% CL	Central value	SD	68% CL	95% CL
$m_T^{\ell \nu b \bar b}$	0.000	-	[-0.020, 0.013]	[-0.033, 0.026]	0.007	-	[-0.040, 0.040]	[-0.079, 0.073]
$Q_\ell\cos\delta^+\otimes p_T^W$	0.000	-	[-0.020, 0.013]	[-0.033, 0.026]	0.000	-	[-0.040, 0.033]	[-0.073, 0.066]
			Kinem	atic + Angular Obser	vables			
ALICES	-0.016	1.644	[-0.037, -0.005]	[-0.048, 0.005]	-0.026	9.562	[-0.058, 0.000]	[-0.090, 0.026]
SALLY	0.000	0.001	[-0.016, 0.016]	[-0.032, 0.026]	0.032	1.070	[0.000, 0.053]	[-0.032, 0.079]

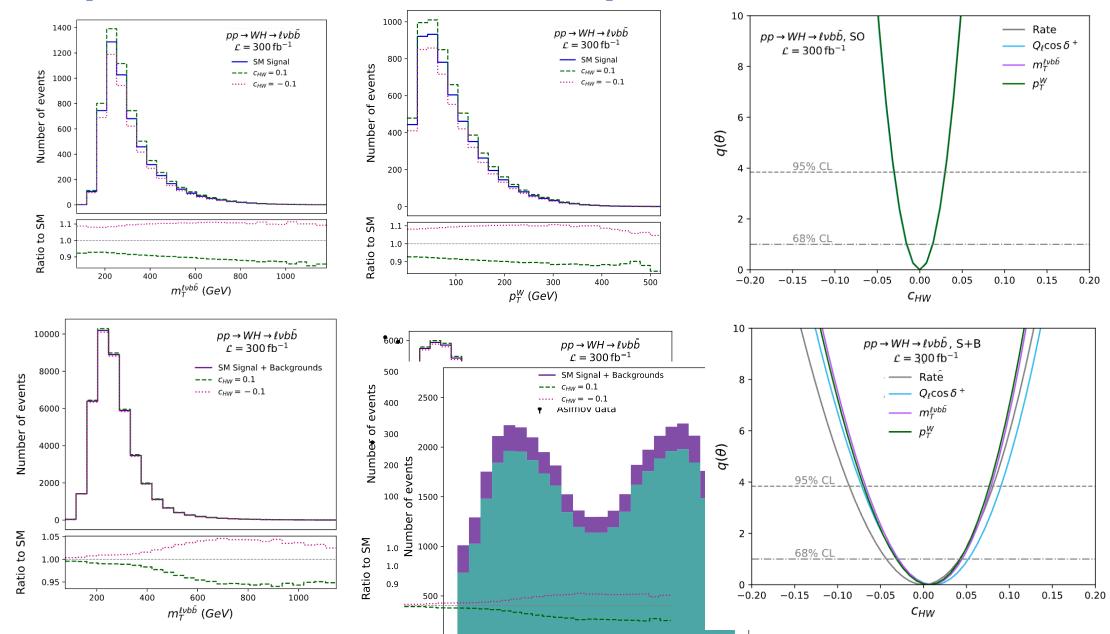
1D vs 2D results



Is Physics na Obstacle? – extra plots CP-odd

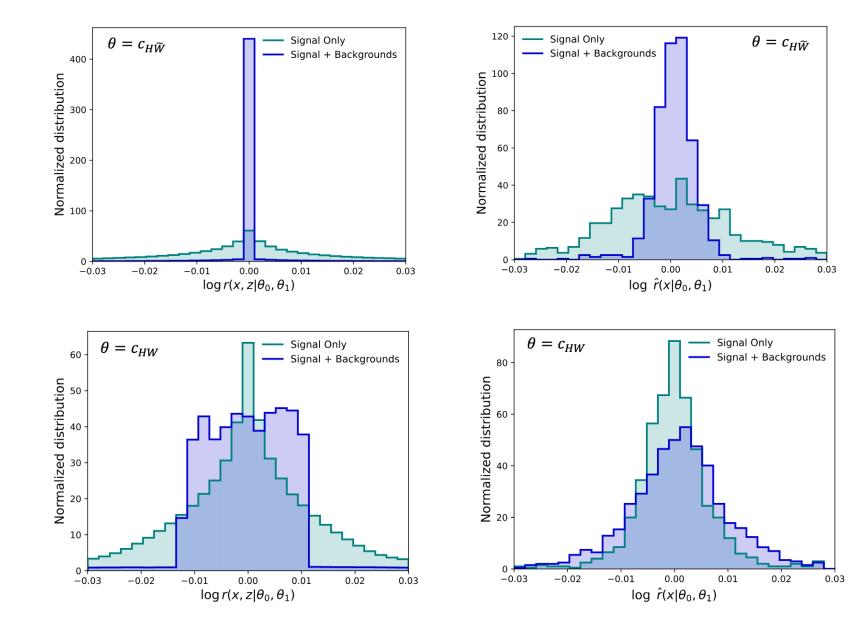


Is Physics an Obstacle? – extra plots CP-even

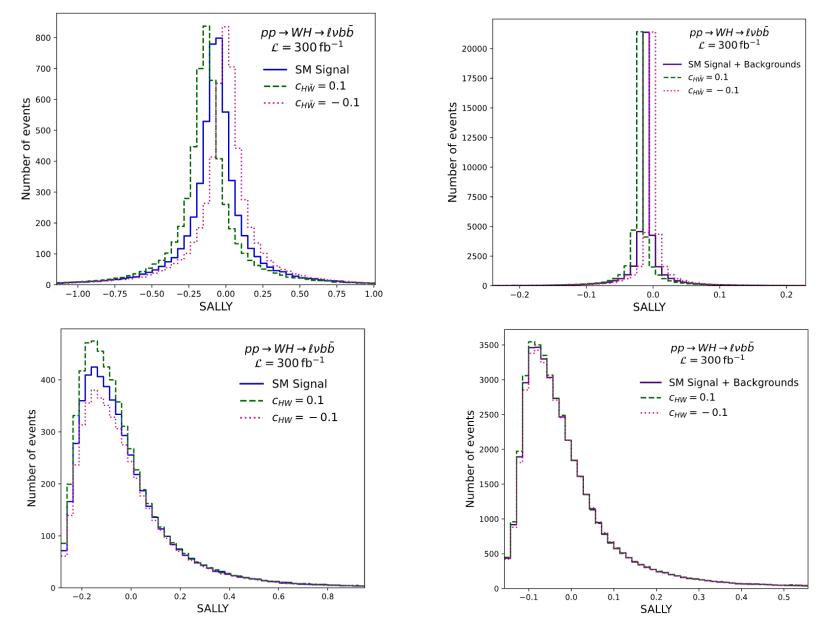


44

Is Physics an Obstacle? – Joint and estimated Ilr



Is Physics na Obstacle? – SALLY



The Demand for More Powerful Computing Resources

Sampling time						
Method	Signal Only	Time Signal + Backgrounds				
SALLY ALICES	4m 7h20m	17m 16h03m				

Training and Evaluation Times for the 5 NNs

Method	Tr	aining Time	Evaluation Time		
1,1001100	Signal Only	Signal + Backgrounds	Signal Only	Signal + Backgrounds	
SALLY	11h00m	1d 1h 14m	17m	36m	
ALICES	23h05m	1d 9h 19m	15h29m	1d 20h 19m	

Future Work / Ideas to overcome the challenges

- Repeating this study in a higher p_T region ٠
 - Increased sensitivity to BSM couplingsIncreased signal-to-background ratio
- The SO results were much more reliable and consistent among individual estimators ٠

Pass the training samples first through a classifier (prior to training) to reduce the number of background events

One of the main challenges is that the sampling in the θ – space induces instabilities ٠

Factorize from the likelihood parametrization the θ dependency

The ALICES sampling is based on inverse transform sampling and the most computationally intensive aspects arise from ٠ calculating the cumulative sum and the index search

Explore other sampling techniques or calculating a binned cumulative distribution function

Training and evaluating these methods are very computationally demanding ٠

We are applying for special access to HPC+GPUs

Calibration and diagnostics

The expectation value of the likelihood ratio assuming θ_1 to be true is given by:

$$\mathbb{E}[m{r}(x| heta_0, heta_1)| heta_1] = \int \mathrm{d}x \; m{p}(x| heta_1) \, rac{m{p}(x| heta_0)}{m{p}(x| heta_1)} = 1$$

A good estimator for the likelihood ratio should reproduce this property. We can numerically approximate this expectation value with:

$$\hat{R}(\theta) = rac{1}{N} \sum_{x_e \sim heta_1} \hat{r}(x_e | heta, heta_1) pprox 1$$

If a likelihood ratio estimator $\hat{r}_{raw}(x|\theta, \theta_1)$ does not satisfy this condition, we can **calibrate** it by rescaling it as:

$$\hat{r}_{ ext{cal}}(x| heta, heta_1) = rac{\hat{r}_{ ext{raw}}(x| heta, heta_1)}{\hat{R}_{ ext{raw}}(heta)}\,.$$

For a perfect estimator, we can even calculate the variance of the numeric calculation of the expectation value:

$$\operatorname{var}[\hat{R}(\theta)] = \frac{1}{N} \left[\mathbb{E}\left[\hat{r}(x|\theta, \theta_1)|\theta\right] - 1 \right]$$

Ensemble variance:

- Train an ensemble of estimators with different training data and random seeds
- Ensemble variance as a measure of uncertainty of the prediction

Reference hypothesis variation:

Any estimated likelihood ratio between two hypotheses θ_A and θ_B should be independent of the choice of the reference hypothesis θ_1 used in the estimator \hat{r} .

$$\hat{r}(x| heta_A, heta_B) = rac{\hat{r}(x| heta_A, heta_1)}{\hat{r}(x| heta_B, heta_1)}$$

To check the stability of the results we can train several independent estimators with different values of θ_1

Reweighting distributions:

A good estimator should satisfy: $p(x|\theta_0) \approx \hat{r}(x|\theta_0, \theta_1) p(x|\theta_1)$

We can draw samples from the 2 distributions and reweight one of them with $\hat{r}(x|\theta_0, \theta_1)$. If a classifier can distinguish between the sample from θ_1 and the reweighted one, $\hat{r}(x|\theta_0, \theta_1)$ is not a good approximation of $r(x|\theta_0, \theta_1)$