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One of the major questions left unaddressed by the
SM is the observed asymmetry between matter and

antimatter in the Universe.

Sources of charge-parity (CP) violation beyond the
SM (BSM) are required to explain this puzzle

The presence of CP-odd components in the Higgs
boson couplings is predicted by many BSM 

theories

Goal: search for CP violation in the 
HWW interaction via leptonic WH production:relevant for Higgs physics

ci - Wilson Coefficients;
 

Oi - operators with the same
SM symmetries

Regarding the SM as a low-energy effective field theory
(SMEFT):

CP-odd operator:

Motivation

CP-even operator:
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Simulation-based inference
The ultimate goal of an EFT analysis is to establish exclusion limits on the parameters of interest θ.

Need to construct the Likelihood Function:

Theory
parameters

Parton-level
momenta

Shower
splittings

Detector
interactionsObservables

𝜃𝑧!𝑧"𝑧#𝑥

Inference
Monte Carlo (MC) simulation

𝑝 𝑥 𝜃 = %𝑑𝑧!%𝑑𝑧"%𝑑𝑧# 𝑝(𝑥|𝑧!)𝑝(𝑧!|𝑧")𝑝(𝑧"|𝑧#)𝑝(𝑧#|𝜃)

It’s infeasible to calculate the integral 
over this enormous latent space 

Intractable 
likelihood

Leads to likelihood-free (LFI) or 
simulation-based inference (SBI)

“How likely is an observation 𝑥 described by the theory 
parameter 𝜃 “
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Addressing the likelihood intractability

Data augmentation: additional information can be extracted from MC simulations and used to define loss functions 
that when minimized converge to the true likelihood ratio/score 

Joint Likelihood ratio: Joint score:

𝑟 𝑥, 𝑧 𝜃!, 𝜃" =
𝑝(𝑥, 𝑧|𝜃!)
𝑝(𝑥, 𝑧|𝜃")

=
𝑝(𝑧#|𝜃!)
𝑝(𝑧#|𝜃")

𝑡 𝑥, 𝑧 𝜃 ≡ ∇$	log 𝑝 𝑥, 𝑧 𝜃 =
∇$𝑝(𝑧#|𝜃)
𝑝(𝑧#|𝜃)

Both quantities can be calculated 
by evaluating the matrix elements

Quantifies change of likelihood in parameter spaceHow much more likely is data to be described by 𝜃! than 𝜃"

We propose using neural networks to estimate:

• The likelihood ratio, 𝑟(𝑥)

• A locally optimal observable (score), 𝑡(𝑥)

Using a trick known as 
“mining gold”

arXiv:1805.12244 

arXiv:1805.00020

Classical methods rely on using one or two observables as summary statistics or
approximations of the shower and detector effects
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https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00020


SALLY vs ALICE(S)
arXiv:1805.12244 

arXiv:1805.00020
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SALLY ALICEALICE

• Goal: learn a detector-level optimal observable
(score) at the SM point

Requirements: 

• Joint score
• Mean squared error loss function

A study of the SALLY 
sensitivity for 𝑐# $% was 

published in 
JHEP04(2024)014 by

R.Barrué (LIP)

Starting point for this
study!

Problem: relies on the assumption that the parameter 
θ is close to the SM

• Goal: learn the likelihood ratio as a function of 𝑥 and 𝜃

Requirements: 

• Joint likelihood ratio 
• Improved cross-entropy loss function

ALICES
vs

• Goal:  learn the likelihood ratio as a function of 𝑥 and 𝜃

Requirements: 
• Joint likelihood ratio 
• Joint score
• Improved cross-entropy loss function

https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00020
https://link.springer.com/article/10.1007/JHEP04(2024)014


Analysis Overview
1. Event Generation (MadGraph):

 

3.  Chose observables/inputs for NN

4. Data unweighting and augmentation

5. Train a Neural Network with a suitable loss 
function

 

 

6. Set limits on 𝜃
 

arXiv:1907.10621
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Signal samples: WH(𝑙𝜈𝑏𝑏); SMEFTsim3; Λ = 1 TeV

- LO reweighting + morphing technique to calculate 
      event weights at any parameter point 𝜃 

Background samples:  semileptonic 𝑡 ̅𝑡; single top 𝑠-channel; 
𝑊 + 𝑏 -jets

2. Parton shower (Pythia8) and detector 
simulation (Delphes) 

- Drawn from MC samples with probabilities 
proportional to the event weights

- Ensembles of 5 NNs for the SALLY, ALICE, 
and ALICES methods

https://arxiv.org/abs/1907.10621


Energy-dependent and angular observables

CP-even

7

CP-odd
CP-odd

CP-odd

Sensitivity to non-zero 𝒄𝑯𝑾  and 𝒄𝑯(𝑾  : S/B increased 
in high 𝑚)

ℓ+, -,  (and 𝑝)% ) regions w.r.t. SM

Not sensitive to sign of 𝑐#%  and 𝑐# $%  : changes in 
observables come mainly from EFT quadratic terms

cos δ. =
𝑝⃗ℓ% ⋅ 𝑝⃗#×𝑝⃗%
𝑝⃗ℓ% 𝑝⃗#×𝑝⃗%

𝑝⃗ℓ%: momentum of lepton in W boson rest frame

• Symmetric for SM signal and backgrounds, 
asymmetric for 𝒄𝑯(𝑾 ≠ 𝟎

• Can extract sign of 𝑐# $%

arXiv:1409.5449 

https://arxiv.org/abs/1409.5449


EFT scenarios studied
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• 1D studies: 𝑐! "# and 𝑐!# independently
constrained

• 2D studies: both coefficients were used as 
inputs to the NNs

Training datasets

Signal Only (SO) Signal + Backgrounds (S+B)

Benchmarks for the ML methods:

• 𝑸ℓ 𝒄𝒐𝒔 𝜹%, 𝒎𝑻
ℓ𝝂𝒃2𝒃 , 𝑸ℓ 𝒄𝒐𝒔 𝜹.⊗𝒎𝑻

ℓ𝝂𝒃-𝒃

• 𝐸, 𝑝3 , 𝑝4 , 𝑝5 of final state particles;
• 𝑝) , 𝜂, 𝜃, 𝜙 of final state particles;
• 𝑥 and 𝑦 componentes + absolute value of 𝐸)6788

• Δ𝜙 and Δ𝑅 between relevant objects
• 𝑚,,
• 𝑄ℓ cos 𝛿. and 𝑄ℓ cos 𝛿9

• 𝑝5+

Input variables to the Neural Networks:

Kinematic
Only (KO) Kinematic + Angular

(K+A)



The effect of the angular observables
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Overall, including the angular 
observable helped the 

estimation tasks 

Better capturing the quadratic 
symmetry of the likelihood

For both the SO and S+B 
datasets, the ALICE method 
failed to learn the likelihood 

function

Highlights the importance of 
having the additional joint 

score information

MLE approached the true 
value + ↓ SD



1D studies: CP-odd results
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Signal Only Signal + Backgrounds

• SALLY and ALICES outperform the 𝑸ℓ 𝒄𝒐𝒔 𝜹% histogram

• ALICES provides tighter limits than SALLY

ALICES > SALLY > 𝑸ℓ 𝒄𝒐𝒔 𝜹%⊗𝒎𝑻
ℓ𝝂𝒃)𝒃 ALICES > 𝑸ℓ 𝒄𝒐𝒔 𝜹%⊗𝒎𝑻

ℓ𝝂𝒃)𝒃> SALLY

Trade-off: ↑ variance + MLEs sometimes ≠ SM



1D studies: CP-even results
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Signal Only Signal + Backgrounds

No significant advantage in using ML-
methods over summary statistics

The rate term of the llr is the primary 
contributor to the results

SALLY > 𝒎𝑻
ℓ𝝂𝒃)𝒃

ALICES: MLE ≠ SM 
ALICE: ↑ ↑ ↑ variance

The SALLY method yields the most 
reliable outcomes



2D studies: results
• Once again, for both datasets, the ML-methods yielded tighter limits than the best ones obtained with a 1D summary statistic.

• The results from the SALLY method were similar to those from the 2D histogram…

… but SALLY can probe many couplings simultaneously!

• Contrary to what was expected from the literature, the ALICES method did not trivially 
outperform SALLY 

(𝛼 = 10)

However, addressing ALICES difficulties could potentially take us beyond the 
sensitivity of both SALLY and 2D histograms
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Major Challenges

! = #!"# 	

Is Physics An Obstacle? The Demand for More Powerful 
Computational Resources

• ALICES learns the correct marginalization of 𝑟(𝑥, 𝑧|𝜃!, 𝜃")

This quantity takes 
extremely small values 

The SM and BSM points are very 
kinematically alike

Any bounds derived from the joint 
likelihood ratio are highly sensitive 

to minor variations in the NN 
output

SALLY learns an optimal observable 
near the SM and can capture the 

differences between SM and BSM 
points, even for small values of 𝒄𝑯&𝑾 

and 𝒄𝑯𝑾

The computational resources required to 
implement the ML−based inference techniques 

are a significant limitation

The ALICES sampling step was 
one of the biggest obstacles 

throughout this work 

Training and evaluating these 
methods require substantial 

resources and time
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Conclusion

• As Run 3 advances, the application of ML-based inference methods, such as ALICES and SALLY, are 
very promising in probing HWW anomalous couplings with higher sensitivity and precision.

• These techniques offer the potential to improve upon the traditional methods and current 
results from the ATLAS and CMS collaborations.

• The advantages of these techniques come with the trade-off of increased complexity and resource 
demands.

• Large amounts of training data are needed to effectively train Neural Networks.
• Converging to the true likelihood ratio can be difficult when BSM signals are similar to SM ones.

• This work highlights the importance of addressing the shortcomings of these techniques (e.g. 
training stability and computational efficiency) to fully realize their potential. 

14



Future Work
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• Repeating this study in a higher 𝑝* region

• Increased sensitivity to BSM couplings
• Increased signal-to-background ratio 

• Training and evaluating these methods are very computationally demanding

We are applying for special access to HPC+GPUs



Thanks!
Any questions?



Backup



Classical methods to constrain EFTs

Likelihood-free inference techniques

Traditional Matrix Element Based Machine Learning

Use one or two observables as 
summary statistics (e.g. 

invariant masses, angular 
observables, etc)

Probability density function 
estimated by filling histograms.

Problem: information loss

Approximates the shower and 
detector effects by a transfer 

function (e.g. 𝑝 𝑥 𝑧 = 𝛿(𝑥 − 𝑧))

Examples: Matrix Element 
Method and Optimal Observables

Problem: numerically expensive 
and not realistic

Use Neural Networks to estimate the 
likelihood or likelihood ratio

• By using ML we do not rely on
simplifications

• Using the joint quantities also
allows for training more precise 

estimators with less training data 
and computational resources. 
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Morphing Technique
Generating samples for each possible parameter θ is extremely time-consuming and impractical.

Solution: Morphing technique to calculate event weights at any parameter point

The morphing tecnhique relies on the fact that the matrix element squared is a polynomial function of the theory paramater (the Wilson 
coefficient):

Example: Measurement of a single BSM parameter
 

By simulating samples from different values of c, one can write a vector of squared matrix elements 𝑀 876:;<=>?
@ 	which depend on the 

coupling values 𝑐 via a morphing matrix 𝐶: 

If the number of simulated samples is equivalent to the dimensionality of 𝐴	, the above relation can be inverted and one can calculate 
the matrix element for any coupling value as a linear combination of the previously simulated matrix elements: 

Morphing weights that can 
be used to interpolate to 

any parameter point
 19



Additional formulas 

Full likelihood function:

observed number of events

Integrated luminosity 

Cross section

where

Joint Likelihood ratio:

Joint score:

Parton-level event weights:

LO reweighting:

20



The likelihood ratio trick
Slide borrowed from Alexander Held1

arX
iv:1805.00020
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https://indico.cern.ch/event/1335237/contributions/5707428/attachments/2771863/4829962/20231214_SBI_introduction.pdf
https://arxiv.org/pdf/1805.00020.pdf


SALLY (Score Approximates Likelihood LocallY)
Score Estimator (SALLY): 

- Goal: learn score as a function of x at 𝜃AB

- Uses joint score 𝑡 𝑥, 𝑧 𝜃C>D :

NN : 𝑥 → 𝑡̂ 𝑥 ≈ ∇- |log 𝑥 𝜃 E!"

With the mean 
squared error (MSE) 

loss function

Close to the Standard Model:

• The score is the sufficient statistics.

• Knowing |𝑡 𝑥 $!" is as powerful as knowing 𝑟 𝑥 𝜃 .

• SALLY is a machine-learning version of an Optimal Observable.

• Can be used to fill histograms for different hypotheses and 
calculate likelihood ratios from them. 
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ALICES (Approximate Likelihood with Improved
Cross-entropy Estimator and Score)

Likelihood Ratio Estimator (ALICES): 

- Goal: learn likelihood ratio as a function of 𝑥 and 𝜃

- Uses joint likelihood ratio 𝑟 𝑥, 𝑧|𝜃 and joint score  
𝑡 𝑥, 𝑧 𝜃 : 

NN : (𝑥, 𝜃) → 𝑟̂ 𝑥|𝜃 ≈ 𝑝 x 𝜃 /𝑝 𝑥 𝜃AB

With the improved cross-entropy
 loss function

The ALICE/ALICES methods are expected to exhibit superior 
performance:

• They use the complete event information for 
reconstructing the likelihood ratio

• Do not rely on the assumption that the parameter θ is 
close to the SM  

• According to the literature, cross-entropy losses are 
expected to have lower variance and increased 
robustness to outliers compared to the standard cross-
entropy loss or the Mean Squared Error loss. 

ALICE 

arXiv:1808.00973

𝑠(𝑥, 𝑧|𝜃!, 𝜃") =
𝑝(𝑥, 𝑧|𝜃")

𝑝 𝑥, 𝑧 𝜃! + 𝑝(𝑥, 𝑧|𝜃")
23

https://arxiv.org/abs/1808.00973


HWW interaction vertex

• VBF does not allow access to the HWW vertex independently of the HZZ vertex.

• Regarding the H → WW decay:

       -  Exhibits lower sensitivity due to the Higgs boson being always on-shell. 

       - The invariant mass of the WW system must always match the mass of the Higgs, constraining the 
          energy transfer to particles in the final state.

       - Involves two neutrinos in the final state, posing a significant challenge.
24



Parton-level validation study

To validate these methods, we need to choose a setup in 
which we can calculate the true likelihood ratio/score

𝑟 𝑥, 𝑧 ≈ 𝑟 𝑥
𝑡 𝑥, 𝑧 ≈ 𝑡 𝑥

Need access to the matrix element
information

Simplified process where all initial and
final state flavors are specified:

𝑢𝑑̅ → 𝑊$ℎ → 𝜇$𝜈%𝑏7𝑏

10& events generated at the SM point + 200k events generated at the other 2 benchmarks (BSM points)

Reweighting to far-away points in parameter space can lead to 
large event weights and thus large statistical fluctuations
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Monte Carlo samples 
• WH(𝑙𝜈𝑏𝑏) signal samples; MadGraph and SMEFTsim3; Λ = 1 TeV

• Signal events generated at (𝑐 (#%, 𝑐#%) = (0,0) and reweighted to obtain event weights for benchmark
points

• Maximum range used in the morphing basis optimization: |𝑐 (#%| ≤ 1.2 ; |𝑐#%| ≤ 1.0

Optimized morphing basis points

• "
F of the signal samples were directly generated at the benchmark points to mitigate large statistical fluctuations that can 
arise from reweighting events to distance points in parameter space

• No reweighting or morphing was applied to the background samples

Number of generated events
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Event selection

Generator-level 
cuts

Cumulative 
efficiencies (in %)
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ALICES sampling
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Sampling Setup for each EFT scenario
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Training settings
• Training dataset defined as 80% of the total generated samples and further split into 75% for training and 25% for validation.

Architecture for SALLY, ALICE and
ALICES (validation) and SALLY in the

1D/2D studies

For ALICE and ALICES

2D study (S+B): 𝛼 = 10 (optimized)
Else: 𝛼 = 5

• Standardize inputs (zero mean + unit variance)
• Early stopping
• Ensemble of 5 NNs makes the predictions more robust to different random seeds
• Different unweighted dataset for training each NN                ensemble variance reflects the uncertainty in the NN outputs due to 

finite training sample sizes
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Setting Limits
Maximum-likelihood

estimatorWe want to decide between two hypothesis: 𝐻!: 𝜃 = 𝜃AB and 𝐻": 𝜃 ≠ 𝜃AB

The best test statistic to discriminate between two hypotesis is:

This can be converted into a 
p-value:

Represents the probability, assuming 𝐻!, of observing data 
at least as extreme as predicted by 𝐻!

Cumulative distribution function of the
chi-squared distribution
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Asymptotic limits in Madminer
• p-values calculated using an Asimov dataset build from the test partition.

• For ALICES, the NN is evaluated for multiple values of 𝜃 and the rate information is added
• For SALLY, inference is performed similarly to histograms of summary statistics

In Madminer these
histograms are constructed
from the training partition

Leads to fluctuations in the
SM template compared to 

the Asimov histogram

We used the entire dataset
to build the histograms (not

ideal for SALLY)
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Binning & likelihood scans
• SALLY and 𝑄ℓ cos 𝛿. − 25 bins

• 𝑝)% bins = 0 − 75, 75 − 150, 150 − 250, 250 − 400, 400 − 600, 600 − ∞ GeV

• 𝑚)
ℓ+,-, bins = 0 − 400, 400 − 800, 800 − ∞ GeV

• 𝑐# $% scanned over [-1.2,1.2] and 𝑐#% over [-1.0,1.0] using 303 points across these ranges. For the 2D studies, 35 points were
considered in each direction.

• Likelihood fits interpolated using spline functions
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Validation at parton-level (I)
• An ensemble of 5 NN was trained using the SALLY, ALICE, and ALICES methods, and the Mean Squared Error (MSE) was used to 

compare each method's sensitivity.

• The ALICES and ALICE MSE were consistently higher when using a Uniform Prior in the sampling.
•  A Gaussian Prior was chosen for the subsequent studies

• The estimated quantities closely align with the true values, confirming that these inference techniques yield reliable results (at 
least in the truth-level scenario).
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Validation at parton-level (II)
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Validation at parton-level (III)

Building an 
ensemble is 

crucial!

ALICE and ALICES exhibited a high variance between the 5 
estimators contrary to SALLY

A different dataset was used for each 
estimator  

The remaining variance is attributed to 
the increased complexity of the ALICE(S) 

loss function compared to SALLY

Part of the variance associated with 
the different 𝜃 populations More susceptible to outliers by learning 

the 𝜃 dependency
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Validation at parton-level (IV)
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1D results – signal only vs signal + backgrounds

CP-odd

CP-even
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1D results – extra results (II)

39



3D likelihood surfaces (ALICES) 
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2D results – extra results (I)
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1D vs 2D results
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Is Physics na Obstacle? – extra plots CP-odd
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Is Physics an Obstacle? – extra plots CP-even
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Is Physics an Obstacle? – Joint and estimated llr
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Is Physics na Obstacle? – SALLY
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The Demand for More Powerful Computing Resources

Sampling time

Training and Evaluation Times for the 5 NNs
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Future Work / Ideas to overcome the challenges
• Repeating this study in a higher 𝑝) region

• Increased sensitivity to BSM couplings
• Increased signal-to-background ratio 

• The SO results were much more reliable and consistent among individual estimators

Pass the training samples first through a classifier (prior to training) to reduce the number of background events

• One of the main challenges is that the sampling in the 𝜃 − space induces instabilities

Factorize from the likelihood parametrization the 𝜃 dependency 

• The ALICES sampling is based on inverse transform sampling and the most computationally intensive aspects arise from
calculating the cumulative sum and the index search

Explore other sampling techniques or calculating a binned cumulative distribution function

• Training and evaluating these methods are very computationally demanding

We are applying for special access to HPC+GPUs
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Calibration and diagnostics
The expectation value of the likelihood ratio assuming 𝜃" to be 
true is given by:

A good estimator for the likelihood ratio should reproduce this 
property. We can numerically approximate this expectation value 
with:

If a likelihood ratio estimator 𝑟̂C<G(𝑥|𝜃, 𝜃")does not satisfy this 
condition, we can calibrate it by rescaling it as:

For a perfect estimator, we can even calculate the variance of the 
numeric calculation of the expectation value:

Ensemble variance:

Train an ensemble of estimators with different training 
data and random seeds

Ensemble variance as a measure of uncertainty of the
prediction

Reference hypothesis variation:
Any estimated likelihood ratio between two hypotheses 𝜃Hand 
𝜃I should be independent of the choice of the reference 
hypothesis 𝜃" used in the estimator 𝑟̂.

To check the stability of the results we can train several 
independent estimators with different values of 𝜃"
Reweighting distributions:
A good estimator should satisfy: 

We can draw samples from the 2 distributions and reweight one 
of them with 𝑟̂ 𝑥 𝜃!, 𝜃" . If a classifier can distinguish between 
the sample from θ"and the reweighted one, 𝑟̂ 𝑥 𝜃!, 𝜃"  is not a 
good approximation of 𝑟(𝑥|𝜃!, 𝜃") 49


