# Searching for resonant flavor-changing charged Higgs production at the LHC

Mohamed Krab

Department of Physics, National Taiwan University

Based on W.-S. Hou and M. Krab, arXiv:2409.18474

Extended Higgs Sector subgroup meeting November 19, 2024

#### General two Higgs doublet model

In the Higgs basis, the general *CP*-conserving 2HDM scalar potential is given by Davidson and Haber, PRD'05; Hou and Kikuchi, EPL'18

$$V(\Phi, \Phi') = \mu_{11}^{2} |\Phi|^{2} + \mu_{22}^{2} |\Phi'|^{2} - (\mu_{12}^{2} \Phi^{\dagger} \Phi' + \text{H.c.}) + \frac{\eta_{1}}{2} |\Phi|^{4} + \frac{\eta_{2}}{2} |\Phi'|^{4} + \eta_{3} |\Phi|^{2} |\Phi'|^{2} + \eta_{4} |\Phi^{\dagger} \Phi'|^{2} + \left[ \frac{\eta_{5}}{2} (\Phi^{\dagger} \Phi')^{2} + (\eta_{6} |\Phi|^{2} + \eta_{7} |\Phi'|^{2}) \Phi^{\dagger} \Phi' + \text{H.c.} \right], \quad (1)$$

with

$$\Phi = \begin{pmatrix} G^+ \\ (v+h_1+iG^0)/\sqrt{2} \end{pmatrix}, \qquad \Phi' = \begin{pmatrix} H^+ \\ (h_2+iA)/\sqrt{2} \end{pmatrix}.$$
 (2)

- $\triangleright$  The usual  $Z_2$  symmetry is dropped  $\implies$  FCNC at tree-level
- Many parameters and extra processes arise
- $\triangleright$  EWBG, Absence of FCNC (e.g.  $t \rightarrow ch_{125}$ ), ... could be explained
- ▷ Sub-TeV H, A,  $H^{\pm}$  bosons may still exist

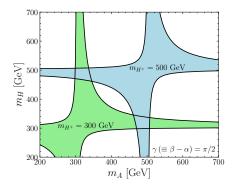
#### General Yukawa interaction

Higgs-fermion interactions can be described by

Davidson and Haber, PRD'05

$$\mathcal{L}_{Y} = -\frac{1}{\sqrt{2}} \sum_{f=u,d,\ell} \bar{f}_{i} \left[ \left( \lambda_{ij}^{f} s_{\gamma} + \rho_{ij}^{f} c_{\gamma} \right) h + \left( \lambda_{ij}^{f} c_{\gamma} - \rho_{ij}^{f} s_{\gamma} \right) H - i \operatorname{sgn}(Q_{f}) \rho_{ij}^{f} A \right] P_{R} f_{j} - \bar{u}_{i} \left[ (V \rho^{d})_{ij} P_{R} - (\rho^{u\dagger} V)_{ij} P_{L} \right] d_{j} H^{+} - \bar{\nu}_{i} \rho_{ij}^{\ell} P_{R} \ell_{j} H^{+} + \operatorname{H.c.}$$
(3)

- $\triangleright \ \lambda^f$  matrices: diagonal, fixed by fermion mass
- $\triangleright 
  ho^f$  matrices: non-diagonal (and in general complex) lead to FCNC
- ▷ Alignment ( $c_{\gamma} \approx 0$ ) suppresses FCNC for h but allows FCNC for H and A
- $\triangleright \ 
  ho_{ij}$  are severely constrained by flavor physics
- ▷ Extra top couplings  $\rho_{tc}$  and  $\rho_{tt}$  could be  $\mathcal{O}(1)$  and can each drive EWBG Fuyuto, Hou, Seneha, PLB'18

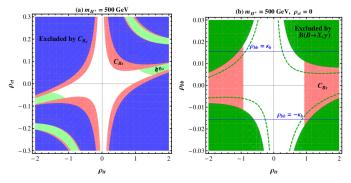

 $\triangleright$  For simplicity, we set all  $\rho_{ij} = 0$  except  $\rho_{tc}$  and  $\rho_{tt}$ 

#### Constraints on G2DHM

G2HDM parameter space is subject to the following constraints:

- > Unitarity, perturbativity and vacuum stability
- $\triangleright$  EWPD through oblique parameters S, T and U using the following fit result:

 $S = 0.05 \pm 0.08$ ,  $T = 0.09 \pm 0.07$ ,  $\rho_{ST} = 0.92$ , [PDG]




<ロト</a>

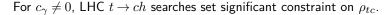
Flavor physics and direct searches (next slides)

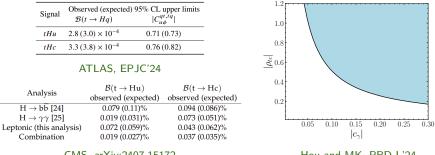
#### Flavor constraints

Because of a  $|V_{cq}/V_{tq}|$  (q = d, s)  $(m_t/m_b)$  enhancement factor,  $\rho_{ct}$   $(\rho_{bb})$  is severely constrained by  $B_q - \bar{B}_q$   $(b \rightarrow s\gamma)$ .



B. Altunkaynak et al., PLB'15


 $\triangleright$  Constraints on  $\rho_{tc}$  are weak due to small  $m_c$ . An upper bound on  $\rho_{tc}$  was found to be  $|\rho_{tc}| \lesssim 1.3 \ (1.7)$  for  $m_{H^+} = 300 \ (500)$  GeV.


A. Crivellin et al., PRD'13

 $\triangleright \rho_{tc}$  and  $\rho_{tt}$  can still be sizable ( $\lesssim O(1)$ ) under current data

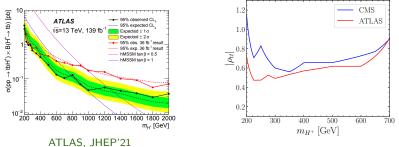
□ > < @ > < ≥ > < ≥ > < ≥ < ≥ < </li>
 → < </p>

#### Limit from $t \rightarrow ch$ searches





CMS, arXiv:2407.15172

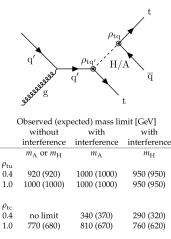

Hou and MK, PRD-L'24

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ Q ( 5/12

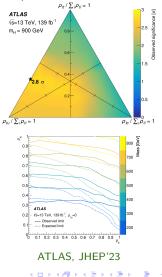
- $|\rho_{tc}| \gtrsim 0.5$  is excluded at 95% CL for  $c_{\gamma} = 0.1$
- $\triangleright$  The limit diminishes for  $c_{\gamma} < 0.1$  and vanishes for  $c_{\gamma} = 0$  (alignment)

# Limit from $H^+ \rightarrow t\bar{b}$ searches

LHC searches for  $pp \rightarrow \bar{t}bH^+ \rightarrow \bar{t}bt\bar{b}$  strongly constrain  $\rho_{tt}$ .



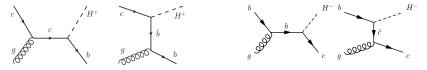

Hou and MK, PRD-L'24


- $\triangleright$  Limits are interpreted assuming  $\mathcal{B}(H^+ \to t \bar{b}) = 100\%$
- ▷ Constraints from LHC searches for  $pp \rightarrow H/A \rightarrow t\bar{t}$  and  $pp \rightarrow t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$  are relatively weaker
- $\triangleright \rho_{tt}$  is safe from constraints from SM Higgs properties  $(s_{\gamma} = 1)$

# Search for G2HDM neutral Higgs bosons

With  $t \to ch$  alignment-suppressed, it is natural to pursue  $cg \to tH/tA \to tt\bar{c}/tt\bar{t}$  (same-sign top/triple top), which is controlled by  $s_{\gamma} \simeq 1$ .

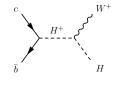



CMS, PLB'24



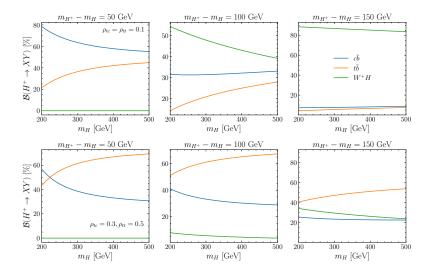
√ < <sup>(</sup>~ 7/12

## Searching for $H^+$ with FC couplings


In G2HDM, where  $\bar{c}bH^+$  couples with strength  $\rho_{tc}V_{tb}$ ,  $cg \rightarrow bH^+$  and  $bg \rightarrow cH^-$  are not CKM-suppressed, compared to 2HDM-II.



Ghosh, Hou, Modak, PRL'20


Hou and MK, PRD-L'24

 $c\bar{b} \rightarrow H^+ \rightarrow W^+H$ , which goes through the same  $\bar{c}bH^+$  coupling of  $\rho_{tc}V_{tb}$ , is suggested as a new avenue for discovering  $H^+$  at the LHC.



Hou and MK, arXiv:2409.18474

#### Charged Higgs decay



#### Signal vs. Background

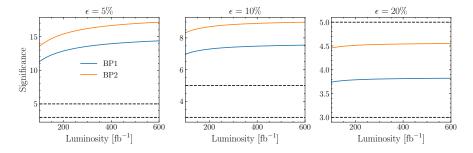
Signal:  $c\bar{b} \rightarrow H^+ \rightarrow W^+H \rightarrow \ell^+\nu t (\rightarrow \ell^+\nu b)\bar{c} \rightarrow \ell^+\ell^+ + \nu\nu + b\bar{c}$ BKG:  $t\bar{t}V$  (V = W,Z), tZj, t $\bar{t}h$ , 4t, tW, WZ, ZZ

| BP | $\eta_2$ | $\eta_3$ | $\eta_4$ | $\eta_5$ | $\eta_7$ | $m_H$ | $m_A$ | $m_{H^+}$ | $\mu_{22}^2/v^2$ |
|----|----------|----------|----------|----------|----------|-------|-------|-----------|------------------|
| 1  | 1.40     | 2.00     | -0.82    | -0.82    | -0.55    | 200   | 300   | 300       | 0.49             |
| 2  | 2.88     | 4.75     | -2.64    | -2.64    | 0.16     | 300   | 500   | 500       | 1.75             |

Table: For BP1,  $\rho_{tc} = \rho_{tt} = 0.1$ , while for BP2,  $\rho_{tc} = 0.3$ ,  $\rho_{tt} = 0.5$ .

Simulation: MadGraph5\_aMC@NLO ( $\sqrt{s} = 14 \text{ TeV}$ ) + Pythia + Delphes

| $\triangleright N_j \ge 2$ with $P_T^j \ge 20$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| $V I V_j \ge 2$ with $I T \ge 20$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Background  | Cross section |
| $\triangleright$ At least one <i>b</i> -tagged ( $N_b \ge 1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tW          | 1.61          |
| $\sim$ $ne \ o \ tagged (1) \geq 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $tar{t}W$   | 1.09          |
| $p_{1}(2) = p_{1}^{\ell}(2) + p_{2}^{\ell}(2) + p_{3}^{\ell}(2) + p_{3}^{\ell$ | WZ          | 0.54          |
| ▷ SS2ℓ ( $N_{\ell} = 2$ ), $P_T^{\ell_{1(2)}} \ge 25(20)$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tZj         | 0.40          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t\bar{t}Z$ | 0.10          |
| $\triangleright \Delta R_{\ell\ell}, \Delta R_{\ell j} > 0.4, E_T^{\text{miss}} > 35 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tth         | 0.05          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZZ          | 0.02          |
| p <sub>T</sub> sum of all jets and two SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4t          | 0.0004        |
| leptons $H_T < 400$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q-flip      | 0.0018        |
| $T_T < 400$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fake        | 0.0002        |


## Significance

We estimate our signal sensitivity using

Kumar and Martin, PRD'15

$$\mathcal{Z} = \sqrt{2\left[ (S+B)\ln\left(\frac{(S+B)\left(B+\Delta_B^2\right)}{B^2+(S+B)\Delta_B^2}\right) - \frac{B^2}{\Delta_B^2} + \ln\left(1 + \frac{\Delta_B^2 S}{B(B+\Delta_B^2)}\right) \right]},$$

with  $\Delta_B = \epsilon B$ , where S(B) is number of signal (background) events, and  $\epsilon$  refers to systematic uncertainty in background estimation.



< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q C<sup>\*</sup> 11/12

# Conclusion

- ▷ Charged Higgs bosons are actively searched for at the LHC.
- $\triangleright$  However, it might be difficult to detect at the LHC via  $bg \rightarrow tH^- \rightarrow t\bar{t}b$ .
- ▷ In G2HDM, resonant  $c\bar{b} \rightarrow H^+$  is induced by the FC top-charm coupling  $\rho_{tc}$  without CKM-suppression, and has a large cross section.
- $\triangleright$  Our proposed  $c\bar{b}\to H^+\to W^+H(\to t\bar{c})$  signal, with its same sign dilepton signature, could be promising.

Thank you!

# Conclusion

- ▷ Charged Higgs bosons are actively searched for at the LHC.
- $\triangleright$  However, it might be difficult to detect at the LHC via  $bg \rightarrow tH^- \rightarrow t\bar{t}b$ .
- ▷ In G2HDM, resonant  $c\bar{b} \rightarrow H^+$  is induced by the FC top-charm coupling  $\rho_{tc}$  without CKM-suppression, and has a large cross section.
- $\triangleright$  Our proposed  $c\bar{b} \to H^+ \to W^+ H (\to t\bar{c})$  signal, with its same sign dilepton signature, could be promising.

#### Thank you!