

Probing the invisible at the LHC

Maria Gonçalves

Collaboration: Margarete Mühlleitner, Rui Santos, Tomás Trindade

November 12, 2024

CFTC-UL & KIT

Founded by FCT - in the framework of the projects no. CFTC: UIDP/00618/2020 and UIDB/ 00618/2020. MG: PhD grant, reference 2023.02783.BD

Many evidence for Dark Matter (DM):

- Rotational velocity curves of galaxies
- Bullet cluster
- Large scale structure

The **Standard Model (SM) does not have a DM candidate**. So, we must look for (**at least**) one new particle.

Ways of detecting DM:

- Indirect detection
- Direct detection
- Collider detection

At the LHC we would detect a lot of missing transverse energy/momentum.

One approach is to consider the **Higgs to be the mediator** between the two sectors (**Higgs Portal models**).

The simplest case is to assume that **DM is a real singlet scalar (RSS) particle**.

Introduction - Singlet Scalar Model

For a **freeze-out DM** candidate, the Singlet Scalar model (SM+RSS) is **highly constrained**, only allowed for masses starting at ≈ 3500 GeV or at the Higgs resonance region.

Maria Gonçalves (CFTC-UL & KIT)

The **Two Singlets Scalar model (SM+2RSS)** is an extension of the SM, its Lagrangian is given by,

$$\begin{split} \mathcal{L}_{\text{SM}+2\text{RSS}} &= \mathcal{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} S_{1}) \partial^{\mu} S_{1} - \frac{1}{2} \mu_{1}^{2} S_{1}^{2} + \frac{1}{2} (\partial_{\mu} S_{2}) \partial^{\mu} S_{2} - \frac{1}{2} \mu_{2}^{2} S_{2}^{2} - \frac{\lambda_{1}}{4!} S_{1}^{4} - \frac{\lambda_{2}}{4!} S_{2}^{4} \\ & \underbrace{-\frac{\lambda_{12}}{4} S_{1}^{2} S_{2}^{2}}_{=\mathcal{L}_{\text{int}(1,2)}} \underbrace{-\frac{\kappa_{H1}}{2} S_{1}^{2} \Phi^{\dagger} \Phi}_{=\mathcal{L}_{\text{portal}(1)}} \underbrace{-\frac{\kappa_{H2}}{2} S_{2}^{2} \Phi^{\dagger} \Phi}_{=\mathcal{L}_{\text{portal}(2)}}, \end{split}$$

Each DM field has its own \mathcal{Z}_2 symmetry: $\mathcal{Z}_2^{(1)} \times \mathcal{Z}_2^{(2)} : S_r(x) \to -S_r(x) \ (r = 1 \text{ or } r = 2).$

Both S_1 and S_2 do not acquire VEVs, *i.e.* $\langle 0| S_{1,2} | 0 \rangle = 0$.

Two Singlets Scalar Model - Constraints

Region allowed by DD:

$$\begin{split} m_{\mathcal{S}_1} &\in [124.8, 230.0] \; \text{GeV} \\ m_{\mathcal{S}_2} &\in [4321.0, 9977.0] \; \text{GeV} \\ \kappa_{H1} &\in [4.066, 9.986] \\ \kappa_{H2} &\in [1.321, 3.074] \\ \lambda_{12} &\in [2.940 \times 10^{-6}, 0.7093] \end{split}$$

At ≈ 125 GeV the channel $S_1S_1 \rightarrow hh$ opens, thus, the relic density decreases making the points not constrained by DD.

However, points close to exclusion by LZ 2024 data.

For monojet searches, we used data from the ATLAS Collaboration [arXiv:2102.10874] where they found model-independent 95% CL limits on visible cross sections for monojet processes at a center-of-mass energy of 13 TeV.

Selection	$\langle \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{ m obs}^{95}$	S ⁹⁵ _{exp}
$p_{\rm T}^{\rm recoil} > 200 {\rm GeV}$	736	102 274	83 000+22 000
$p_{\rm T}^{\rm recoil} > 250 {\rm GeV}$	296	41 158	33 800 ^{+11 300} -9400
$p_{\rm T}^{\rm recoil} > 300 {\rm GeV}$	150	20 893	15400^{+5900}_{-4300}
$p_{\rm T}^{\rm recoil} > 350 {\rm GeV}$	86	11937	8300 ⁺³¹⁰⁰ -2300
$p_{\rm T}^{\rm recoil} > 400 {\rm GeV}$	52	7214	4700^{+1800}_{-1300}
$p_{\rm T}^{\rm recoil} > 500 {\rm GeV}$	21	2918	1930 ⁺⁷³⁰ -540
$p_{\rm T}^{\rm recoil} > 600 {\rm GeV}$	10	1391	940 ⁺³⁶⁰ -260
$p_{\rm T}^{\rm recoil} > 700 {\rm GeV}$	4.1	574	490^{+190}_{-140}
$p_{\rm T}^{\rm recoil} > 800 { m GeV}$	2.1	298	277^{+106}_{-77}
$p_{\rm T}^{\rm recoil} > 900 {\rm GeV}$	1.2	164	168^{+65}_{-47}
$p_{\rm T}^{\rm recoil} > 1000 {\rm GeV}$	1.3	186	119 ⁺⁴⁵ -33
$p_{\rm T}^{\rm recoil} > 1100 {\rm GeV}$	0.5	73	75^{+28}_{-21}
$p_{\rm T}^{\rm recoil} > 1200{\rm GeV}$	0.3	40	49^{+19}_{-14}

Considerations:

- up to 4 jets
- a leading jet with $p^T > 150 \text{ GeV}$
- up to 3 additional jets with $p^T > 30 \text{ GeV}$

For mono-Z searches, we also used ATLAS data [arXiv:1807.11471] where they found results for the model-independent upper limits at 95% CL on the visible cross section.

$E_{\rm T}^{\rm miss}$ range	Upper limit at 95% CL [fb]					
[GeV]	$\sigma_{ m vis}^{ m obs}$	$\sigma_{ m vis}^{ m exp}$	-1σ	+1 σ	$A \times \varepsilon$	
$Z+DM, Z \rightarrow q\bar{q}$						
[150, 200]	313	225	162	314	20%	
[200, 250]	69	60	43	83	20%	
[250, 300]	39	29	21	40	30%	
[300, 400]	31.1	18.5	13.3	25.7	45%	
[400, 600]	9.2	9.1	6.5	12.6	50%	
[600, 1500]	3.0	2.6	1.9	3.6	55%	

The results are expressed in terms of:

$$\sigma_{Z+DM}(E_T^{miss}) = \frac{\sigma_{vis,Z+DM}(E_T^{miss})}{B_{Z \to q\bar{q}} \times (A \times \epsilon)(E_T^{miss})}$$

What happens if we add another RSS?

Now, for the **Three Singlets Scalar model (SM+3RSS)**, the Lagrangian is given by,

$$\mathcal{L}_{\text{SM+3RSS}} = \mathcal{L}_{\text{SM}} + \sum_{r=1}^{3} \left[\frac{1}{2} (\partial_{\mu} S_{r}) \partial^{\mu} S_{r} - \frac{1}{2} \mu_{r}^{2} S_{r}^{2} - \frac{\lambda_{r}}{4!} S_{r}^{4} - \frac{\kappa_{Hr}}{2} S_{r}^{2} \Phi^{\dagger} \Phi \right]$$
$$\underbrace{-\frac{\lambda_{12}}{4} S_{1}^{2} S_{2}^{2}}_{=\mathcal{L}_{\text{int}(1,2)}} - \frac{\lambda_{23}}{4} S_{2}^{2} S_{3}^{2} - \frac{\lambda_{31}}{4} S_{3}^{2} S_{1}^{2}}_{=\mathcal{L}_{\text{int}(3,1)}}$$

Each DM field has its own Z_2 symmetry: $Z_2^{(1)} \times Z_2^{(2)} \times Z_3^{(2)} : S_r(x) \to -S_r(x) \ (r = 1, r = 2 \text{ or } r = 3).$ Both S_1 , S_2 and S_3 do not acquire VEVs, *i.e.* $\langle 0| S_{1,2,3} | 0 \rangle = 0.$

Considerations about the 3RSS model:

- Large parameter space
- More allowed regions could appear

We found **two cases** so far:

- $m_{S_3} < m_{S_1} < m_{S_2}$
- $m_{S_1} < m_{S_2} < m_{S_3}$

Three Singlets Scalar Model - LZ (2024)

Case: $m_{S_3} < m_{S_1} < m_{S_2}$

Maria Gonçalves (CFTC-UL & KIT)

Three Singlets Scalar Model - LZ (2024)

Case: $m_{S_1} < m_{S_2} < m_{S_3}$

- 2RSS less constrained than 1RSS
- S₁ visible at colliders
- S_2 cannot be visible at colliders
- Collider constraints on the 2RSS may be important in the next LHC run
- 3RSS can be promising, but additional regions are hard to find

Thank you!