

Possible large pseudoscalar Yukawa couplings in the complex 3HDM

Jorge C. Romão

Instituto Superior Técnico, Departamento de Física & CFTP

A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

12 November 2024

We investigate the curious possibility that h125 couples to the top quark mostly as a scalar, while it couples to the bottom quark mostly as a pseudoscalar.

- This possibility was allowed by 2017 data for the so-called C2HDM; a two Higgs doublet model with a single source of explicit CP violation. It was shown recently that this possibility almost disappears when using the full experimental data of 2024 (see Duarte Fontes talk)
- Here we discuss a three Higgs doublet with explicit CP violation (C3HDM), and show that the curious CP-even/CP-odd tt/bb possibility is partly resuscitated, prompting further experimental exploration of this prospect.

Collaborators: J. P. Silva, R. Boto, L. Lourenço, 2407.19856 [JHEP in print.]

Motivation

Motivation

The Model

Scan & Constraints

ΓΈCΝΙCΟ

Results

Conclusions

The scalar potential

Motivation

The Model

Potential

• Parameterization

TÉCNICO LISBOA

• Type-Z

• Lag. Yukawa

• Higgs Couplings

Scan & Constraints

Results

Conclusions

The scalar potential obeying the $Z_2 imes Z_2$ symmetry is

$$V = V_2 + V_4 = \mu_{ij}(\Phi_i^{\dagger}\Phi_j) + z_{ijkl}(\Phi_i^{\dagger}\Phi_j)(\Phi_k^{\dagger}\Phi_l) ,$$

where

$$V_{2} = \mu_{11}(\Phi_{1}^{\dagger}\Phi_{1}) + \mu_{22}(\Phi_{2}^{\dagger}\Phi_{2}) + \mu_{33}(\Phi_{3}^{\dagger}\Phi_{3}) + \left(\mu_{12}(\Phi_{1}^{\dagger}\Phi_{2}) + \mu_{13}(\Phi_{1}^{\dagger}\Phi_{3}) + \mu_{23}(\Phi_{2}^{\dagger}\Phi_{3}) + h.c.\right) ,$$

$$\begin{split} V_4 &= V_{RI} + V_{Z_2 \times Z_2} ,\\ V_{RI} &= \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_3^{\dagger} \Phi_3)^2 + \lambda_4 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_5 (\Phi_1^{\dagger} \Phi_1) (\Phi_3^{\dagger} \Phi_3) + \lambda_6 (\Phi_2^{\dagger} \Phi_2) (\Phi_3^{\dagger} \Phi_3) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \lambda_8 (\Phi_1^{\dagger} \Phi_3) (\Phi_3^{\dagger} \Phi_1) + \lambda_9 (\Phi_2^{\dagger} \Phi_3) (\Phi_3^{\dagger} \Phi_2) , \end{split}$$

 $V_{Z_2 \times Z_2} = \lambda_{10} (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_{11} (\Phi_1^{\dagger} \Phi_3)^2 + \lambda_{12} (\Phi_2^{\dagger} \Phi_3)^2 + h.c. ,$

Motivation

The Model

Potential

- Parameterization
- Type-Z
- Lag. Yukawa
- Higgs Couplings
- Scan & Constraints
- Results
- Conclusions

- The soft terms μ_{11} , μ_{22} , μ_{33} are real
- The complex μ_{12} , μ_{13} , μ_{23} parameters break the $Z_2 \times Z_2$ symmetry softly.
- The quartic parameters λ_{10} , λ_{11} , λ_{12} can in general be complex, while all other quartic parameters are real
- The potential piece V_{RI} is invariant under the independent rephasings of each scalar
- The piece $V_{Z_2 \times Z_2}$ is invariant under $Z_2 \times Z_2$ but not under general independent rephasings of each scalar.

TÉCNICO Parameterization in terms of physical quantities

We define

The Model

Potential

ISBOA

Parameterization

• Type-Z

• Lag. Yukawa

• Higgs Couplings

Scan & Constraints

Results

Conclusions

 $\Phi_i = \begin{bmatrix} w_i^+ \\ (v_i + x_i + i \ z_i)/\sqrt{2} \end{bmatrix}, \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v \begin{pmatrix} c_{\beta_2}c_{\beta_1} \\ c_{\beta_2}s_{\beta_1} \\ s_{\beta_2} \end{pmatrix}.$

Higgs Basis (HB)

$$\begin{bmatrix} x \\ z' \end{bmatrix} = \begin{bmatrix} \mathbb{1} & 0 \\ 0 & R_H \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}, w^{+\prime} = R_H w^+, R_H \equiv \begin{bmatrix} c_{\beta_2} c_{\beta_1} & c_{\beta_2} s_{\beta_1} & s_{\beta_2} \\ -s_{\beta_1} & c_{\beta_1} & 0 \\ -s_{\beta_2} c_{\beta_1} & -s_{\beta_2} s_{\beta_1} & c_{\beta_2} \end{bmatrix}$$

Rotation from HB to Mass Eigenstates $M_{ch}^{2\prime} = W^{\dagger} \begin{bmatrix} m_{H_{1}^{\pm}}^{2} & 0 \\ 0 & m_{H_{2}^{\pm}}^{2} \end{bmatrix} W, M_{n}^{2\prime} = R^{T} \begin{bmatrix} m_{h_{1}}^{2} & 0 & 0 & 0 \\ 0 & m_{h_{2}}^{2} & 0 & 0 & 0 \\ 0 & 0 & m_{h_{3}}^{2} & 0 & 0 \\ 0 & 0 & 0 & m_{h_{4}}^{2} & 0 \\ 0 & 0 & 0 & 0 & m_{h_{4}}^{2} \end{bmatrix} R$

Independent parameters

Motivation

The Model

Potential

Parameterization

• Type-Z

• Lag. Yukawa

• Higgs Couplings

Scan & Constraints

Results

Conclusions

The unitary matrix W is parameterized by two angles, heta and arphi

The orthogonal 5×5 matrix R is parameterized by ten angles,

 $\alpha_{12}, \, \alpha_{13}, \, \alpha_{14}, \, \alpha_{15}, \, \alpha_{23}, \, \alpha_{24}, \, \alpha_{25}, \, \alpha_{34}, \, \alpha_{35}, \, \alpha_{45}$

Using the minimization eqs and the rotations W and R we can solve for all the quartic parameters and for the imaginary part of the soft terms.

■ However one can not take all the masses as independent, there are three relations to be satisfied (one in the C2HDM), giving $m_{h_3}, m_{h_4}, m_{h_5}$

O Our fixed inputs are v = 246 GeV and $m_{h_1} = 125 \text{ GeV}$

The remaining 20 independent parameters are

 $\theta, \varphi, \alpha_{12}, \alpha_{13}, \alpha_{14}, \alpha_{15}, \alpha_{23}, \alpha_{24}, \alpha_{25}, \alpha_{34}, \alpha_{35}, \alpha_{45}, \beta_1, \beta_2$

 $m_{h_2}, m_{H_1^{\pm}}, m_{H_2^{\pm}}, \operatorname{Re}(m_{12}^2), \operatorname{Re}(m_{13}^2), \operatorname{Re}(m_{23}^2)$

TÉCNICO LISBOA Type-Z Yukawa couplings

Motivation

- The Model
- Potential
- Parameterization

- Type-Z
- Lag. Yukawa
- Higgs Couplings
- Scan & Constraints
- Results
- Conclusions

- To avoid the stringent constraints from flavour experiments one normally imposes Natural Flavour Conservation (NFC)
- In the 2HDM there are four ways to implement NFC
- In contrast, in 3HDM there is the new possibility that each right-handed fermion species (up-type quark, down-type quark, and charged lepton) couples to a distinct scalar. This is the so-called type-Z model.

fermion type	type-l	type-II	type-X	type-Y	type-Z
up quarks (u)	Φ_3	Φ_3	Φ_3	Φ_3	Φ_3
down quarks (d)	Φ_3	Φ_2	Φ_3	Φ_2	Φ_2
charged leptons (ℓ)	Φ_3	Φ_2	Φ_2	Φ_3	Φ_1

LISBOA Type-Z Yukawa couplings

Motivation

The Model

- Potential
- Parameterization

● Type-Z

• Lag. Yukawa

• Higgs Couplings

Scan & Constraints

Results

Conclusions

The simplest symmetry groups that can enforce the type-Z couplings in the 3HDM are Z_3 and $Z_2 \times Z_2$

Here, we focus on the model with a $Z_2 \times Z_2$ symmetry, with the following action on scalars, right-handed down-type quarks (d_R) , and right-handed charged-leptons (ℓ_R) :

 $Z_2: \Phi_1 \to -\Phi_1, \quad \ell_R \to -\ell_R,$ $Z'_2: \Phi_2 \to -\Phi_2, \quad d_R \to -d_R,$

(with all other SM fields invariant under the transformation) leading to the type-Z couplings

In this work, we study the type-Z 3HDM with a softly-broken Z₂ × Z₂ symmetry, allowing for complex parameters in the potential; we dub this the complex 3HDM (C3HDM).

The Yukawa Lagrangian

Motivation

The Model

- Potential
- Parameterization

TÉCNICO

ISRNA

- Type-Z
- Lag. Yukawa

• Higgs Couplings

Scan & Constraints

Results

Conclusions

The Yukawa Lagrangian has then terms of the form

$$\mathcal{L}_{\mathsf{Yukawa}} = \mathcal{L}_{ff} + \mathcal{L}_{\Phi ff} \; ,$$

where \mathcal{L}_{ff} are the fermion mass terms,

 $-\mathcal{L}_{ff} = \overline{d}_L D_d d_R + \overline{u}_L D_u u_R + \overline{\ell}_L D_\ell \ell_R + h.c. = \overline{d} D_d d + \overline{u} D_u u + \overline{\ell} D_\ell \ell ,$ and $\mathcal{L}_{\Phi ff}$ contains the scalar-fermion interactions

$$-\mathcal{L}_{\Phi ff} = (\overline{p}_L \ \overline{n}_L) \Gamma \begin{pmatrix} \varphi_d^+ \\ (x_d + iz_d)/\sqrt{2} \end{pmatrix} n_R + (\overline{p}_L \ \overline{n}_L) \Delta \begin{pmatrix} (x_u - iz_u)/\sqrt{2} \\ -\varphi_u^- \end{pmatrix} p_R \\ + (\overline{\nu}_L \ \overline{\ell}_L) Y \begin{pmatrix} \varphi_\ell^+ \\ (x_\ell + iz_\ell)/\sqrt{2} \end{pmatrix} \ell_R + h.c.$$

The interactions of fermion eigenstates with the unrotated neutral scalars ξ'_i are,

$$-\mathcal{L}_{\xi'ff} = \frac{m_{\ell i}}{v_{\ell}} \overline{\ell}_i (x_{\ell} + i\gamma_5 z_{\ell})\ell_i + \frac{m_{di}}{v_d} \overline{d}_i (x_d + i\gamma_5 z_d)d_i + \frac{m_{ui}}{v_u} \overline{u}_i (x_u - i\gamma_5 z_u)u_i$$

WG3-2024 - 9

LISBOA Higgs Couplings to Fermions

□ Now we have to rotate to the scalar mass eigenstates. We define

Motivation

The Model

- Potential
- Parameterization

- Type-Z
- Lag. Yukawa

Higgs Couplings

Scan & Constraints

Results

Conclusions

Now we have to rotate to the scalar mass eigenstates. We t

$$\xi' \equiv (x_\ell, x_d, x_u, z_\ell, z_d, z_u)^T , \quad \xi = Q\xi'$$

The rotation matrix Q is obtained from R_H and R. We therefore have,

$$x_i = Q_{ij}^T \xi_j = Q_{ji} \xi_j$$
, $z_i = Q_{3+i,j}^T \xi_j = Q_{j,3+i} \xi_j$,

where $\xi_1 = G^0$ is the pseudo-Goldstone boson absorbed by the Z boson, and $i \in \{1, \ldots, 3\}$, while $j \in \{1, \ldots, 6\}$.

Therefore

$$-\mathcal{L}_{\xi ff} = \sum_{f,j} \frac{m_f}{v} \overline{f} \frac{v}{v_f} \left(Q_{jf} \pm i\gamma_5 Q_{j,N+f} \right) f \,\xi_j = \sum_{f,j} \frac{m_f}{v} \overline{f} \left(c^e_{\xi_j ff} + i\gamma_5 c^o_{\xi_j ff} \right) f \,\xi_j \,,$$

where we defined (+ for leptons and down quarks, - for up quarks)

$$c^e_{\xi_j ff} + i\gamma_5 c^o_{\xi_j ff} = \frac{v}{v_f} \left(Q_{jf} \pm i\gamma_5 Q_{j,N+f} \right)$$

TÉCNICO LISBOA	Constraints
Motivation The Model	We have implemented all the known constraints:
Scan & Constraints • Constraints	Bounded from Below (BFB)
• Scan Results Conclusions	Perturbativity of Yukawa couplings

- Perturbative Unitarity
- S,T, U oblique parameters
- Stringent limits on EDM of the electron
- Signal strengths from LHC on the h_{125}
- Constraints from flavour like $b \rightarrow s\gamma$
- HiggsSignals and HiggsBounds from HiggsTools

LISBOA How do we scan: random scan

Motivation

The Model

Scan & Constraints

• Constraints • Scan

Results

Conclusions

Our fixed inputs are v = 246 GeV and $m_{h1} = 125 \text{ GeV}$ We then would take random values in the ranges: $\theta, \varphi, \alpha_{12}, \alpha_{13}, \alpha_{14}, \alpha_{15}, \alpha_{23}, \alpha_{24}, \alpha_{25}, \alpha_{34}, \alpha_{35}, \alpha_{45} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right];$ $\tan \beta_1, \tan \beta_2 \in [0.3, 10];$ $m_{h_2}, \in [125, 1000] \text{ GeV}, m_{H_1^{\pm}}, m_{H_2^{\pm}} \in [100, 1000] \text{ GeV};$ $\operatorname{Re}(m_{12}^2), \operatorname{Re}(m_{13}^2), \operatorname{Re}(m_{23}^2) \in [\pm 10^{-1}, \pm 10^7] \text{ GeV}^2$

- These 20 free parameters (other than v and m_{h_1}) fully determine the point in parameter space
- However, as in the real 3HDM case, this random scan has a very low probability of success. In fact even worse than in the real case; lower than 1 point per 10^{13} sampled points

How do we scan: importing from the real 3HDM

The C3HDM has a real limit corresponding to,

$$\alpha_{12} = \alpha_1, \ \alpha_{13} = \alpha_2, \ \alpha_{23} = \alpha_3, \ \alpha_{45} = -\gamma_1, \ \theta = -\gamma_2$$

 $\varphi = \alpha_{14} = \alpha_{15} = \alpha_{24} = \alpha_{25} = \alpha_{34} = \alpha_{35} = 0,$

where α_1 , α_2 , α_3 , γ_1 , γ_2 are the variables defined in the real 3HDM, and β_1 , β_2 retain their meaning in both cases.

- So we produced sets of points in the real 3HDM, and then we imported them into the C3HDM
- The next step is to scan around these points. This was done within the ranges

```
\alpha_{14}, \alpha_{15} \in [-0.01, 0.01];
```

```
\varphi, \alpha_{24}, \alpha_{25}, \alpha_{34}, \alpha_{35} \in [-0.1, 0.1].
```

These ranges were chosen to be close to the real case.

Motivation

The Model

• Constraints

Scan

Results

Conclusions

Scan & Constraints

TÉCNICO LISBOA **Enlarging the pseudoscalar component**

from the red points by enlarging the pseudoscalar component

$\int \mathbf{TECNICO}_{\text{LISBOA}} \quad \textbf{(Anti)-Correlation between } c_{\tau}^{o} \text{ and } c_{b}^{0}$

- Motivation The Model Scan & Constraints Results • $c^o_{b,\tau}$ vs $c^e_{b,\tau}$
- Conclusions

- As in type-Z one couples one Higgs doublet to each type of fermions, one would think that limits in one type would not affect the others
- This is important because in the C2HDM the experimental limits of the pseudoscalar component of the τ obtained in the decay $h_{125} \rightarrow \tau \overline{\tau}$ by CMS and ATLAS had an impact on large pseudoscalar components for the b-quark
- However we found that there is one relation among all the coefficients $c_f^{o,e}$. In the limit that the odd component of the top quark vanishes (a very good approximation) we have

$$\frac{c_{\tau}^0}{c_b^0} \simeq -\tan^2 \beta_1$$

In red our points, in green those satisfying the previous equation

Large pseudoscalar component of the b-quark and τ lepton

- $\hfill\square$ Left panel c^o_b vs c^e_b and right panel c^o_τ vs c^e_τ
- In red we consider only the uncorrelated constraints on the signal strengths μ_{ij} . In blue we consider HiggsSignals at 3σ and in green HiggsSignals at 2σ
- The constraints on $h_{125} \rightarrow \tau \overline{\tau}$ only affect the τ lepton. For the *b*-quark a large pseudoscalar component is obtained, although not maximal.

Conclusions

Motivation <u>The Model</u> Scan & Constraints

Results

Conclusions

ÉCNICO

- We have developed a parameterization for the C3HDM and implemented a code to study the model
- □ All known constraints were implemented
- Contrary to initial expectations although each doublet couples to a different type of fermion, there is still some correlation between the τ lepton and the *b*-quark
- However, the previous correlation does not preclude large pseudo scalar components for the couplings of the *b*-quark, although not maximal
- **Therefore these results prompt further experimental exploration**

5.4	1.11		•
IVI	otr	vat	ion

The Model

Scan & Constraints

Results

Conclusions

BACKUP SLIDES

EXAMPLE 7 Large pseudoscalar component of the b-quark: c_b^o versus c_b^e

TÉCNICO LISBOA Large pseudoscalar component of the τ : c_{τ}^{o} versus c_{τ}^{e}

