Signatures of new neutral scalars in multi-Higgs models

João Pedro Pino Goncalves¹

Work done in collaboration with: P.M. Ferreira, Antonio P. Morais, Roman Pasechnik,

Felipe F. Freitas, António Onofre, and Vasileios Vatellis

¹Physics Department and Centre for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, Portugal.

LHC Higgs Working Group WG3 (BSM) – Extended Higgs Sector subgroup meeting

Based on Phys.Rev.D 107 (2023) 9, 095041. arxiv: 2211.10109 [hep-ph]

departamento de física

Motivation and Model		

Multi-Higgs extensions: Simplest matter extensions. Predicted in various high-scale **GUT and SUSY** models with extensive phenomenological implications:

- Dark Matter and CP violation;
- FCNCs;
- Astrophysical consequences e.g. GWs from phase transitions.

Multiple classes of models (2HDM, 3HDM, C2HDM, etc). Detailed literature on experimental searches on various channels

- **CP-odd scalars**: $A \to \tau^+ \tau^-$ [Phys. Rev. Lett. 125, 051801], $A \to HZ^0$ [Eur. Phys. J. C 81, 396 (2021)], $A \to b\bar{b}$ [Phys. Rev. D 102, 112006 (2020)];
- **CP-even scalars**: $H \rightarrow \tau^+ \tau^-$ [Phys. Rev. Lett. 125, 051801], $H \rightarrow b\bar{b}$ [Eur. Phys. J. C 80, 1165 (2020)], $H \rightarrow AA$ [JHEP 08, 139 (2020)]
- Singly-charged scalars : $H^{\pm} \rightarrow tb$ [JHEP 06, 145 (2021)], $H^{\pm} \rightarrow cs$ [Phys. Rev. D 102, 072001 (2020)]

In general (with some exceptions!), most searches focus on BSM Higgs decays to heavy SM states

- Limited searches for decays into 1st/2nd gen. chiral quarks
- Charged Higgs primarily probed in the tbH^{\pm} vertex
- Limited searches for decays involving multiple BSM Higgs.

Additional parameter space can be probed in more complex final states, involving various BSM scalars

Motivation and Model		

Model used in this work first introduced in [Phys.Rev.D 106 (2022) 7, 075017]. 2HDM + singlet with a non-trivial ${\rm U}(1)'$ flavour symmetry. Yukawa Lagrangian

$$\begin{split} -\mathcal{L}_{\text{Yukawa}} &= \overline{q_L^0} \Gamma_a \Phi^a d_R^0 + \overline{q_L^0} \Delta_a \tilde{\Phi}^a u_R^0 + \text{H.c.} + \overline{\ell_L^0} \Pi_a \Phi^a e_R^0 + \overline{\ell_L^0} \Sigma_a \tilde{\Phi}^a \nu_R \\ &+ \frac{1}{2} \overline{\nu_R^c} \left(\text{A} + \text{B}S + \text{C}S^* \right) \nu_R + \text{H.c.} \,, \end{split}$$

Scalar potential:

$$\begin{split} V_0 &= \quad \mu_a^2 |\Phi^a|^2 + \lambda_a |\Phi^a|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \mu_S^2 |S|^2 + \lambda_1' |S|^4 \\ &+ \lambda_2' |\Phi_1|^2 |S|^2 + \lambda_3' |\Phi_2|^2 |S|^2 \quad (a = 1, 2), \\ V_1 &= \quad \mu_3^2 \Phi_2^{\dagger} \Phi_1 + \frac{1}{2} \mu_b^2 S^2 + a_1 \Phi_1^{\dagger} \Phi_2 S + a_2 \Phi_1^{\dagger} \Phi_2 S^{\dagger} + a_3 \Phi_1^{\dagger} \Phi_2 S^2 + \text{H.c.} \,, \end{split}$$

Once the fields develop VEVs, we have **3 CP-even states** (h, H_2 , H_3), **2 CP-odd states** (A_2 , A_3) and a singly charged scalar (H^{\pm}).

Motivation and Model	Signal and analysis	

- Two opposite charge, same flavour leptons (muons or electrons);
- At least four jets from 1st/2nd generation quarks (originate from A₂);
- Two pairs of jets with identical mass;
- Pre-selection LO cross-section: $\mathcal{O}(10^{-1}) - \mathcal{O}(10^{-2})$ fb.

Potentially observable at **run-III** or at the **HL phase** of the LHC. Two pseudoscalars and one CP-even scalar running as internal propagators, **all on-shell** such that

 $M_{A_3} > M_{A_2} + M_{H_2}$ and $M_{H_2} > M_{Z^0} + M_{A_2}$

Motivation and Model	Signal and analysis	

- Dominant backgrounds: $\bar{t}t$ and $\mathbf{Z}^0 + \mathbf{jets};$
- Sub-leading but relevant: Single top, $\bar{t}t + V$, Diboson;

Leading-order cross-sections with MadGraph with MLM jet matching. Hadronization in Pythia8 and fast detector simulation of the ATLAS detector with Delphes. ROOT for analysis of distributions.

Motivation and Model	Signal and analysis	

- Mass information can be use to match pairs of jets to original scalars fields;
- $\Delta M = M(j_1, j_2) M(j_3, j_4) < \varepsilon$:
 - Signal: small ε ;
 - **Background**: Arbitrary ε ;
- Loop over all possible combinations of jets and select the pairs with smallest ε .

Match jets to H_2 scalar: $\min \left(\left| M(j_n, j_m) - M(\mathbf{Z}^0) - M(H_2) \right| \right)$

If the minimum is for pair (j_3, j_4) , then this is matched to the blue leg and the pair (j_1, j_2) is matched to the red leg.

Since ε is expected to be arbitrary, the matching procedure can help reduce backgrounds for small values of ε .

Well-defined Breit-Wigner mass distributions for all scalar fields in the decay chain $(M_{A_2} = 300 \text{ GeV} \text{ and } M_{H_2} = 600 \text{ GeV}).$

Motivation and Model			Results		
	σ (before cuts, in fb)	σ (after cuts, in fb)	Events at run-III	Events at HL-LHC	
Signal (Point H1)	0.0594	0.0065	2	19	
Signal (Point H2)	0.16	0.000699	< 1	2	
$Z^0 + jets$	4.12×10^{6}	9.64	2891	28915	
$t\bar{t}$	9.85×10^{5}	59.18	17754	177540	
Single top	3.43×10^{5}	34.68	4306	43068	
$t\bar{t} + V$	33.41	0.024	7	71	
Diboson	7.79×10^{4}	0.045	13	135	

M(j) > 15 GeV and $\Delta M < 25 \text{ GeV}$.

	σ (before cuts, in fb)	σ (after cuts, in fb)	Events at run-III	Events at HL-LHC
Signal (Point H1)	0.0594	0.028	8	87
Signal (Point H2)	0.16	0.0048	1	14
$Z^0 + jets$	4.12×10^{6}	92.25	27675	276750
$t\bar{t}$	9.85×10^{5}	768.08	230424	2304240
Single top	3.43×10^{5}	301.70	37470	374700
$t\bar{t} + V$	33.41	0.25	75	750
Diboson	7.79×10^4	13.39	4017	40170

M(j) > 10 GeV and $\Delta M < 35 \text{ GeV}$.

H1: $M_{A_2} = 300 \text{ GeV} / M_{H_2} = 600 \text{ GeV}$; **H2:** $M_{A_2} = 215 \text{ GeV} / M_{H_2} = 400 \text{ GeV}$;

Neural networks to separate signal and background and compute statistical significance following methods of [J.Phys.Conf.Ser. 1525 (2020) 012110]

M(j) > 15 GeV and $\Delta M < 25 \text{ GeV}$

Better results for higher cuts on data, therefore **limited by statistics**. This signal can be **potentially** probed at the **HL-LHC**

Motivation and Model	Results	

M(j) > 10 GeV and $\Delta M < 35 \text{ GeV}$

Relaxed constraints on jet mass distributions increases the significance. Particularly helpful for lower mass scalar fields. Still, **high cuts** on data for optimal results.

Motivation and Model		Final remarks

To finalize . . .

- I have discussed a particular signal topology, involving various BSM scalar fields in the decay chain, and studied its implications on future runs of the LHC.
- I have shown that the combination of kinematic information of the scalar fields can be used to match the original scalars to the outgoing jets;
- Employing neural networks, I have shown that these type of topologies can be probed for at the high-luminosity phase of the LHC.

Signatures of new neutral scalars in multi-Higgs models

Thank you for your attention

LHC Higgs Working Group WG3 (BSM) – Extended Higgs Sector subgroup meeting

