

(日) (图) (문) (문) (문)

200

Searching for light Higgs bosons in the 2HDM at the LHC

Presented by Souad Semlali

University of Southampton & STFC Rutherford Appleton Laboratory- PPD

Based on: 10.1103/PhysRevD.109.055020 & 2401.07289 & 24xx.xxxx [hep-ph]

A. Arhrib, S. Moretti, C. H. Shepherd-Themistocleous, Y. Wang and Q.S. Yan

November 19, 2024

LHC Higgs Working Group WG3 (BSM) Extended Higgs Sector subgroup

MOTIVATION : $H \rightarrow aa(hh) \rightarrow X_1X_1X_2X_2$ at LHC

- ★ Many BSM models motivate additional features of new di-Higgs final states (accessible by the LHC experiments in a variety of signatures, e.g. H → aa, hh)
- * Experiments have placed upper limits on light Higgs decay rates

	Channel ($H \rightarrow aa \rightarrow 4f$)	Mass of a, m_a (GeV)	
	4b	[20, 60]	
Resonant scenario	$\rightarrow 2b2\tau$	[15, 60]	
10.1103/PhysRevD.109.055020	$2b2\mu$	[20, 60]	
	$2b2\mu$	[20, 62.5]	LHC Agenda
	$2b2\mu$	[16, 62]	Exotic Higgs decays
	4μ	-	
Resonant scenario	\rightarrow 4τ	[15, 60]	5
arXiv : 2401.07289	$2\mu 2 au$	[3.6, 21]	3
	$\frac{4\tau}{2\mu 2\tau}$	[4, 15]	<u>i</u>
	$2\mu 2 au$	[15, 62.5]	E
	<u>4</u> <i>e</i>	[10, 60]	
	$2e2\mu$	[10, 60]	
Resonant scenario $2b2\gamma$ —	$\rightarrow 4\gamma$	[10, 60]	
arXiv : 24xx.xxx	$2\gamma 2j$	[20, 60]	

Phys.Rev.D 109 (2024) 5, 055008

1

Dac

CP CONSERVING 2HDM

- * The Two-Higgs-Doublet Model (2HDM) is an effective theory with extra SU(2)_L doublet
- Simple, compatible with relevant experimental and theoretical constraints, (part) of the Higgs spectrum accessible at the LHC, properties testable at the LHC

$$\begin{split} V(\Phi_1, \Phi_2) &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left\{ \frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} \end{split}$$

- * To prevent FCNC at tree-level, a Z_2 symmetry can be imposed \rightarrow removes λ_6 , λ_7
- * Free parameters : 5 masses after EWSB, $\tan \beta = v_2/v_1$, mixing angle α and m_{12}^2

Alignment limit (the current LHC data favor the parameter space of the 2HDM around the alignment limit)

- * Standard hierarchy: $\cos(\beta \alpha) \rightarrow 0$, $h \equiv H_{SM}$
- * Inverted hierarchy: $\sin(\beta \alpha) \rightarrow 0$, $H \equiv H_{SM}$ (our main focus)

Couplings to fermions and gauge bosons lead to different phenomenology w.r.t the SM

* The general structure of the Yukawa Lagrangian when both Higgs fields couple to all fermions :

$$\mathcal{L}_{Y} = \bar{Q'}_{L}(M'_{u}\tilde{H}_{1} + Y'_{u}\tilde{H}_{2})u'_{R} + \bar{Q'}_{L}(M'_{d}H_{1} + Y'_{d}H_{2})d'_{R} + \bar{L'}_{L}(M'_{l}H_{1} + Y'_{l}H_{2})l'_{R} + \text{h.c}$$

$$\rightarrow \text{FCNC at tree level!}$$

* Z₂ symmetry : 4 scenarios based on how the Higgs doublets couple to SM particles

2HDM	y_u^h	y_d^h	y^h_ℓ	y_u^H	y_d^H	y^H_ℓ
Type-I	c_{α}/s_{β}	c_{α}/s_{β}	c _α /s _β	s_{α}/s_{β}	s_{α}/s_{β}	s_{α}/s_{β}
Type-X	c_{α}/s_{β}	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	s_{α}/s_{β}	s_{α}/s_{β}	c _α /c _β

$$\frac{1}{s_{\beta}} \propto \frac{1}{\tan \beta}$$

$$\frac{c_{\alpha}}{s_{\beta}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$$
$$\frac{s_{\alpha}}{s_{\beta}} = \cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha)$$
$$\frac{-s_{\alpha}}{c_{\beta}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THEORETICAL AND EXPERIMENTAL CONSTRAINTS

Our Strategy : Scan BSM parameter space, keeping only points passing various theoretical and experimental constraints

2HDMC Code (D. Eriksson, J. Rathsman and O. Stål)

- * Unitarity, Perturbativity, Vacuum Stability
- * EW Precision Observables (S, T and U)

HiggsBounds (P. Bechtle et al), and HiggsSignal (P. Bechtle et al)

- * Exclusion limits at 95% Confidence Level (CL) from Higgs searches at colliders (LEP, Tevatron and LHC)
- * Constraints from the Higgs boson signal strength measurements

SuperIso (F. Mahmoudi)

* Constraints of flavour physics observables, namely, $B \to X_s \gamma$, $B_{s,d} \to \mu^+ \mu^-$ and $\Delta m_{s,d}$

$2b2\tau$ Analysis (2HDM Type-I)

$2b2\tau$ Analysis

- Samples of BPs for the signal given by $H \rightarrow hh \rightarrow b\bar{b} \tau_e \tau_{\mu}$ are considered
 - * $\tau_e \tau_e$ and $\tau_\mu \tau_\mu$ are neglected to suppress DY
- * Different background processes are considered :
 - * $pp \rightarrow t\bar{t} \rightarrow e^{\pm}\mu^{\mp}b\bar{b} + E_T^{\text{miss}}$
 - Weak boson processes : Z-pair production, Zbb̄, Zττ, ZWj
 - QCD processes bbjj
- Cuts at generation level :
 - * $p_T(b) > 10 \text{ GeV}, p_T(l) > 5 \text{ GeV},$
 - * $E_T^{\text{miss}} > 5 \text{ GeV}, |\eta(b, l)| < 2.5,$
 - * $\Delta R(ll, bl, bb) > 0.3, H_T < 70 \,\text{GeV}$

Toolbox to generate and analyse MC events

 QCD corrections to signal and background processes are considered through K-factor

Background process	σ (pb)
$pp \rightarrow Z(\rightarrow b\overline{b})Z(\rightarrow ll), l = (e, \mu, \tau_{e, \mu})$	0.009 pb
$pp \rightarrow Z(\rightarrow ll)b\overline{b}, l = (e, \mu, \tau_{e, \mu})$	6.1 pb
$pp \rightarrow Z(\rightarrow b\overline{b})ll, l = (e, \mu, \tau_{e, \mu})$	0.015 pb
$pp \rightarrow ZW^{\pm}j, W^{\pm} \rightarrow l\nu_l (l = e, \mu, \tau_{e, \mu})$	0.0051 pb
$pp \rightarrow t\bar{t} \rightarrow e^{\pm} \mu^{\mp} b\bar{b} + E_T^{miss}$	0.28 pb

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ < C</p>

$2b2\tau$ Analysis : *h* within the sub-60 GeV range (challenges!)

★ Soft b-(anti quarks) ⇒ b-tagging efficiency?!

* The current CMS cross trigger requires :

Selection criteria	еµ
$p_T(e)$	$23 \rightarrow 10 \text{ GeV}$
$p_T(\mu)$	8 GeV
$6 p_T(b)$	> 10 GeV
$ \eta(e,\mu) $	< 2.4
Isolation(e/μ)	0.10/0.15

- * Propose a new trigger :
 - Double muon trigger : low p_T^µ from B meson decays
 - Triggering on electron pairs after applying a dR cut in Run 3
 - * $e\mu$ trigger : $p_T^{e,\mu} \sim 10$ GeV with a rate in 2-5 KHz is feasible at Run 3

<ロト < 回 > < 回 > < 回 > < 回 > = 回

Dac

* Events selection requirements :

- * 2-leptons ($e^{\pm}\mu^{\mp}$) and 2 *b*-jets
- * m_z -veto : $|m_z m_{ll}| < 10 \text{ GeV}$
- * $62.5 < m_T^H < 125.5 \, \text{GeV}$

*
$$\Delta m_h \equiv (m_{b\bar{b}} - m_{ll}^T)/m_{ll}^T < 0.5$$

* $m_{b\bar{b}} < 62.5 \text{ GeV}$ and $m_T^{ll} < 62.5 \text{ GeV}$

 $\Sigma = \frac{N_S}{\sqrt{N_S + N_B}}$, with $N_{S(B)}$ is the signal (background) events number after applying the kinematic cuts

BP	Signific	cance (Σ), $\mathcal{L} = 3$	500fb^{-1}	Significance (Σ), $\mathcal{L} = 3000 \text{ fb}^{-1}$				
DI	15/10 (GeV)	20/15 (GeV)	20/20 (GeV)	15/10 (GeV)	20/15 (GeV)	20/20 (GeV)		
BP1	0.68	0.81	1.36	2.15	2.56	4.30		
BP2	1.30	1.64	2.34	4.11	5.18	7.39		
BP3	1.24	1.57	2.35	3.92	4.96	7.43		
BP4	1.07	1.32	2.11	3.38	4.17	6.67		
BP5	1.33	1.57	2.3	4.20	4.96	7.27		
BP6	1.22	1.44	2.18	3.85	4.55	6.89		
BP7	1.48	1.71	2.34	4.68	5.40	7.39		
BP8	2.14	2.37	2.84	6.76	7.49	8.9		
BP9	1.36	1.59	2.28	4.3	5.02	7.2		
BP10	1.0	1.11	1.76	3.16	3.51	5.56		

TABLE – Significances for our signal against the two dominant backgrounds with $\sqrt{s} = 13$ TeV and integrated luminosity 300 fb⁻¹ (left) as well as 3000 fb⁻¹ (right)

- * Better significance with a pre-selection cut of 20/20 GeV
- Difficulty in discovering/ruling out some of the BPs at Run 3
- * Sensitivity to 2HDM Type-I with HL-LHC

* The signal process is : $H \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$

BP	BP_1	BP_2	BP_3	BP_4	BP_5	BP_6					
m_h	20	25	- 30	35	- 40	44					
$sin(\beta - \alpha)$	-0.12	-0.07	-0.05	-0.06	-0.077	-0.11					
$\tan \beta$	8	13	20	17	14	10					
m_A	- 89	86	87	- 90 -	94	99					
$m_{H^{\pm}}$	125	119	109	108	116	145					
	Bra	nching	Ratio	s [%]							
$BR(H \rightarrow hh)$	0.35	2.4	3.4	- 3	1.33	2.14					
$BR(h \rightarrow b\bar{b})$	79	83	84	85.2	84.2	84.3					
$BR(h \rightarrow \gamma \gamma)$	6.4	2.9	2.3	2.08	3.17	2.85					
Cross-section [pb]											
$\sigma^{LO}_{bb\gamma\gamma}$	$\sigma^{LO}_{b\bar{b}\gamma\gamma}$ 0.0061 0.02 0.022 0.0177 0.012 0.0174										

- Different SM background processes are considered :
 - * $pp \to t\bar{t}H, t \to bW^+, \bar{t} \to \bar{b}W^-, H(\to \gamma\gamma)$
 - * $gg \rightarrow t\bar{t}H, t \rightarrow bW^+, \bar{t} \rightarrow \bar{b}W^-, H(\rightarrow \gamma\gamma)$
 - * $pp \rightarrow Z(\rightarrow b\bar{b})H(\rightarrow \gamma\gamma)$
 - * $pp \rightarrow Z(\rightarrow jj)H(\rightarrow \gamma\gamma), \ j = j, \ b, \ \bar{b}$
 - * $pp \rightarrow b\bar{b}H(\rightarrow \gamma\gamma)$

Cuts at generation level :

- * $|\eta(l,j)| < 2.5, p_T(l,j) > 10 \text{ GeV}$
- * $\Delta R(ll, lj, jj) > 0.4, E_T^{\text{miss}} > 5 \text{ GeV}$

A sharp mass peak around 125 GeV (Signal)

- * Events selection requirements :
 - * 2-photons and 2 b-jets
 - * $m_{b\bar{b}} < 62.5 \,\text{GeV}$
 - * $m_{\gamma\gamma} < 62.5 \,\text{GeV}$
 - * $m_H < 150.0 \, \text{GeV}$

*
$$\Delta m_h \equiv (m_{b\bar{b}} - m_{\gamma\gamma})/m_{\gamma\gamma} < 0.25$$

BP	BP ₁	BP_2	BP_3	BP_4	BP_5	BP_6
m_h (GeV)	20	25	30	35	40	44
NoE	823.5	2700	2970.000	2591	1980	3027
$\gamma\gamma$	172.14	593	635.10	518.87	402.19	600.67
2 b-jets	4.75	33.39	38.10	33.06	21.879	30.45
$m_{bb} < 62 \text{ GeV}$	3.12	27.02	30.41	25.78	16.03	21.98
$m_{\gamma\gamma} < 62 \text{ GeV}$	3.12	27.00	30.35	25.73	15.97	21.92
$\Delta m_h < 0.25$	1.92	20.68	25.33	21.09	13.26	18.8
$m_H < 150.0 \text{ GeV}$	1.91	20.57	25.18	20.75	13.10	18.55

TABLE III. Signal events rates after applying basic and mass cuts for $\mathcal{L} = 300 \text{ fb}^{-1}$.

A significant improvement in the isolation of signal events from background noise due to kinematic cuts

Process	$Z(\rightarrow bb)H$	$Z(\rightarrow jj)H$	$pp \rightarrow t\bar{t}H$	$gg \rightarrow t\bar{t}H$	$pp \rightarrow bbH$
m_h (GeV)	120	120	120	120	1 20
NoE	32.940	210	183	138	-147.00
22	9.54	60.27	56.005	42	49.74
2 b-jets	2.65	3.24	21.55	16.51	7.70
$m_{bb} < 62 \text{ GeV}$	0.48	0.33	1.93	1.04	2.34
$m_{\gamma\gamma} < 62 \text{ GeV}$	0.001	-	0.009	0.004	0.001
$\Delta m < 0.25$	-	-	0.005	-	-
$m_H < 150.0 \text{ GeV}$	-	-	0.002	-	-

TABLE IV. Backgrounds events rates after applying basic and mass cuts for $\mathcal{L} = 300 \text{ fb}^{-1}$.

* BPs are within the discovery reach at Run 3 of the LHC, with a significance above 5σ

Benchmark Points (BP)	BP_1	BP_{2}	BP_3	BP_4	BP_5	BP_6
m_h (GeV)	20	25	30	35	40	44
Significance (Σ)	2.18	7.07	7.9	7.2	5.72	6.8

TABLE V. Significances for our signal with $\sqrt{s} = 14$ TeV and $\mathcal{L} = 300$ fb⁻¹.

4τ Analysis (2HDM Type-X)

* The signal process is :

 $H \to hh \to \tau^+ \tau^- \tau^- \tau^+ \to \ell \nu_\ell \ell \nu_\ell \tau_j \tau_j$

- Same sign (SS) leptons are required to improve the experimental significance
- Different background processes are considered :
 - * $pp \rightarrow t\bar{t} \rightarrow lv_l lv_l b\bar{b}$
 - * $pp \rightarrow Wtb \rightarrow lv_l lv_l b\overline{b}$
 - * $pp \rightarrow WWjj \rightarrow lv_l lv_l jj$
 - * $pp \rightarrow Zjj \rightarrow lv_l lv_l jj$
 - * $pp \rightarrow ZZ \rightarrow lv_l lv_l \tau \tau$
 - * $pp \rightarrow t\bar{t}Z \rightarrow lv_l lv_l b\bar{b}\tau\tau$
 - * $pp \rightarrow t\bar{t}ZZ \rightarrow lv_l lv_l b\bar{b}\tau\tau$
 - * $pp \rightarrow t\bar{t}WW \rightarrow lv_l lv_l lv_l jj$ where j refers here to parton.
- Cuts at generation level :
 - * $|\eta(l,j)| < 2.5, p_T(l,j) > 10 \text{ GeV}$
 - * $\Delta R(ll, lj, jj) > 0.4, E_T^{\text{miss}} > 5 \text{ GeV}$

σ (fb)	BP1	BP2	BP3	BP4	BP5	BP6	BP7	BP8	BP9
parton level generation	9.260	11.688	12.432	12.442	10.310	12.978	12.976	15.475	15.493
selection of 212j	2.548	3.184	3.246	3.192	2.027	2.413	2.320	2.638	2.660
selection of SS 21	1.196	1.494	1.522	1.498	1.007	1.239	1.141	1.301	1.295

TABLE III. Cross sections for signals in the parton level, detector level, and after selection of SS leptons at $\sqrt{s} = 14$ TeV for 300 fb⁻¹.

σ (fb)	$t\bar{t}$	$W^{\pm}tb$	W^+W^-jj	Z_{jj}	ZZ	$t\bar{t}Z$	$t\bar{t}ZZ$	$t\bar{t}W^+W^-$
parton level generation	16060	518.3	1053	317600	18.89	0.49	1.14×10^{-4}	0.02
selection of 2l2j	8787.7	289.9	530.1	151086	10.0	0.33	1.1×10^{-4}	0.018
selection of SS 21	19.43	0.62	1.99	0	2.51	0.079	3.3×10^{-5}	$7.6 imes 10^{-3}$

TABLE IV. Background rates after the acceptance cuts in Eq. (6) at $\sqrt{s} = 14$ TeV for 300 fb⁻¹.

4τ Analysis (2HDM Type-X)

Kinematic variables : M_{lj} , M_{ll} , M_{jj} , M_H

* Pairing 21 and 2j to find a combination which minimizes χ^2 ,

$$\chi^{2} = (M_{lj}^{1} - M_{h})^{2} + (M_{lj}^{2} - M_{h})^{2}$$

Combining 21 and 2j together (M_{ll}, M_{jj})

* Hard background spectra (lepton and jet pairs always come 14721 a heavy resonance)

* Reconstruction of m_H with two leptons and two jets but without any MET

* *M_H* is lower than the real SM-like Higgs boson mass, but it is still useful!

- * ロ > * 虚 > * き > * き * りへで

A Gradient-Boosted Decision Tree (GBDT) approach is further applied

Ten input variables in total are used for the GBDT/TMVA analysis :

- * $M_{h_1}, M_{h_2}, M_H, M_{ll}, H_T$
- * 5 angles between pairs of objects in the final state,

Energy variables	$M^{1}_{l\tau_{j}}$	$M_{l\tau_j}^2$	M_{ll}	M_{jj}	H_T
Angular variables	$\cos(\theta_{h_1h_2})$	$\cos(\theta_{l_1j_1})$	$\cos(\theta_{l_1j_2})$	$\cos(\theta_{l_2j_1})$	$\cos(\theta_{l_2j_2})$

TABLE V. The input observables used in the GBDT analysis.

* A very good separation between signal and background!

$L=300~{\rm fb^{-1}}$	S	tī	$t\bar{t}W^+W^-$	$t\bar{t}Z$	$t\bar{t}ZZ$	Wtb	W^+W^-jj	ZZ	B/S	Σ
Acceptance	806.1	2.17128e+06	2.3	63	0.01	53751.6	119699	2790.8	2912.3	0.53
SS Leptons	449.1	5829.8	1.5	23.6	0.01	186.6	595.5	754.1	16.5	5.07
$HT \in [40,200]$	206	1040.7	0.002	0.5	1e-05	40.4	127.9	379.1	7.7	4.86
$M_{ll} \in [10,100]$	188.6	982.9	0.001	0.5	1e-05	35.8	69.5	330.9	7.5	4.7
$M_{lj}^1 \in [0, 120]$	182	770.9	0.0008	0.4	1e-05	31.1	60	287.5	6.3	4.99
$M_{lj}^2 \in [0, 120]$	174.3	674.5	0.0008	0.4	8e-06	26.4	45.8	263.4	5.8	5.06
$M_H \in [20,230]$	115.5	269.8	0	0.2	5e-06	10.9	26.9	135.7	3.8	4.89
$GBDT \in [0.5, 1]$	88	0	0	0.08	3e-06	0	11.1	37	0.5	7.54

TABLE VI. Response to our selection cuts for the signal (e.g., BP2) and background (separately and total) rates computed at $\sqrt{s} = 14$ TeV for 300 fb⁻¹.

* Kinematic selection is quite efficient in separating signal from background

Σ	BP1	BP2	BP3	BP4	BP5	BP6	BP7	BP8	BP9
after selecting SS leptons	4.07	5.06	5.16	5.07	2.81	3.33	3.2	3.63	3.66
after kinematic cuts, w/o GBDT	3.98	4.87	4.96	4.89	2.44	2.88	2.78	3.13	3.16
after kinematic cuts, w/ GBDT	6.46	7.53	7.63	7.54	5.54	6.16	6.02	6.5	6.53

TABLE VIII. Significances following our different selections for all signals (BP1–BP12) at $\sqrt{s} = 14$ TeV for 300 fb⁻¹.

* Exploitation of the GBDT output \Rightarrow double the final significance

- * The possibility of optimising searches for very light Higgses in 2HDM Type-I/X
- * Focusing on the $hh \to b\bar{b}\gamma\gamma$, $b\bar{b}\tau_e\tau_\mu$, $\tau_l\tau_l\tau_h\tau_h$ decays pattern
- * A potential improve of the analysis sensitivity due to the trigger choice
- * Sensitivity to 2HDM Type-I signatures with Run-3 and HL-LHC.
- * Possibility of observing $H \rightarrow hh \rightarrow 4\tau$ at the end of Run 3 of the LHC following a dedicated selection based on kinematic and TMVA analysis

Thank you for listening

Backup

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NUMERICAL RESULTS

FIGURE – Allowed (left panel) and excluded (right panel) parameter space over the $(m_h, \tan \beta)$ plane. Here, $m_{H^{\pm}} = 165.58 \text{ GeV}, m_A = 98.9 \text{ GeV}, \sin(\beta - \alpha) = -0.10, m_{12}^2 = 154 \text{ GeV}^2$

The triple Higgs coupling *Hhh* is written as follows :

$$Hhh = -\frac{gc_{\beta-\alpha}}{2m_{W}s_{2\beta}^{2}} \left[(2m_{h}^{2} + m_{H}^{2})s_{2\alpha}s_{2\beta} - 2(3s_{2\alpha} - s_{2\beta})m_{12}^{2} \right]$$

18/21

FIGURE – The p_T distributions of the leading (subleading) lepton and *b*-(anti)quark of different background processes are shown at parton level

< ロ > < 部 > < E > < E > E の < で</p>

* Many BSM models motivate additional features of new di-Higgs final states (accessible by the LHC experiments in a variety of signatures, e.g. $H \rightarrow aa$, hh)

* Expected limits on $Br(H \rightarrow aa \rightarrow b\bar{b}\tau\tau)$ are found to be in range (1.5–5.6)%, for m_a between 12 and 60 GeV, corresponding to observed limits in range (1.8–7.7)% at 95% CL

The m_T^{ll} variable is defined from p_{ll} (the total four-momentum of the leptons) and E_T^{miss} as :

$$m_T^{ll} = \sqrt{p_{ll}^0 E^0 - |p_{ll}^T| |E^T|} \cos(\phi_{ll, E_T^{\text{miss}}}).$$
(1)

For the sake of convenience, we denote E_T^{miss} as (E^0, E^T, p_z) , where p_z is the unknown *z*-component of the missing momentum and E^T is a 2D vector defined in the (x, y) plane perpendicular to the beam direction. Here, $\phi_{ll, E_T^{\text{miss}}}$ denotes the perpendicular angle between the di-lepton system and E_T^{miss} .

 m_T^H is defined from the two *b*-jet four-momenta $p_{b\bar{b}} = p(b) + p(\bar{b})$, p_{ll} and E_T^{miss} . To define m_T^H , we first express the visible momentum, which equals $p_{\text{vis}} = p_{b\bar{b}} + p_{ll}$, so that we have

$$m_T^H = \sqrt{p_{vis}^0 E^0 - |p_{vis}^T| |E^T| \cos(\phi_{\text{vis}, E_T^{\text{miss}}})} , \qquad (2)$$

where $\phi_{\mathrm{vis},E_{T}^{\mathrm{miss}}}$ denotes the perpendicular angle between visible momentum and $E_{T}^{\mathrm{miss}}.$