

CMS Run 3 highlights and HL-LHC prospects

Annapaola de Cosa ETH Zurich

Introduction

Very broad and evolving topic: here a personal selection of Run 3 results and HL-LHC projections

- More Run 3 results expected at upcoming Winter conferences.
 - Highlights on novel techniques enhancing sensitivity
- New and updated HL-LHC projections to be released soon for input to the European Strategy

LHC Run 3 data taking

Annapaola de Cosa -ETHZ

What changed with respect to Run 2

- **Increased statistics**
 - Many Run 2 analyses statistically limited, e.g. heavy $H/A \rightarrow \tau \tau$ limited at high mass
- **Increase in** \sqrt{s} from 13 to 13.6 TeV
- Improved data-taking strategy (Parking, Scouting and unconventional online data selection)
- Improvement in identification algorithms using ML
 - e.g b-tagging light jet rejection improved by a factor 59 wrt Run 2
 - Also improved performance for c-tagging

Large improvements expected in Run 3 and new results are underway

CMS Simulation Preliminary 13.6 TeV udsg-jet misidentification efficiency tt events, $p_T > 20 \text{ GeV}$, $|\eta| < 2.4$ CSVv1 (Likelihood ratio - Run 1 CSVv2 (MLP - Early Run 2) pCSV (DNN - Run 2) (CNN+RNN - Late Run 2) Net (DGCNN - Early Run 3) UParT (Transformer - Run 3) **b-tagging** 10_0.0 0.2 0.8 0.4 0.6 1.0 b-jet tag efficiency CMS Simulation Preliminary 13.6 TeV dsg-jet misidentification efficiency c-tagging tt events, $p_T > 20$ GeV, $|\eta| < 2.4$ CSVv2 (MLP - Early Run 2) ⊐ 10-DeepCSV (DNN - Run 2) — DeepJet (CNN+RNN - Late Run 2) ---- ParticleNet (DGCNN - Early Run 3) — UParT (Transformer - Run 3) 10-4-0.8 0.6 1.0 0.2 0.4 c-jet tag efficiency

Online Data Selection: Trigger

CMS online data selection (Trigger) has two levels:

- Hardware based Level 1 Trigger (L1): 40 MHz \rightarrow 100 kHz
- Software based High Level Trigger (L2): 100 kHz → 1 kHz

Annapaola de Cosa -ETHZ

Limited capability to process and store data reflects in reduced output

High threshold on physics observables limit data rate, but also the sensitivity reach

Alternative data acquisition strategies

Alternative strategies based on data-size reduction, processing delay and non-conventional triggers

- **Data Scouting:** Save only high-level features reconstructed online reduced event size

Annapaola de Cosa -ETHZ

Data Scouting

CMS-HIG-21-007

Data Parking

Run 2 Data Parking mainly used for BPhysics

- In 2018 CMS collected **10 billions unbiased B hadrons decays**
- key physics results: R_K measurement and $B \rightarrow K^* \mu^+ \mu^$ differential BR, but also HNL in b hadron decays
- Trigger strategy based on **displaced muon** from other B Hadron decays

$H \rightarrow yy$ Measurement

Measurement of fiducial inclusive and differential production cross sections

- Very clean final state topology, although low BR (~0.23%). Invariant mass can be precisely reconstructed
- Overall similar strategy than full Run 2 result
- 2022 data used: 34.7 fb⁻¹
- **Improved energy measurement** (better than **1%** in the barrel) and estimate of per-photon energy resolution
- Improved modelling of photon identification variables using normalising flows - agreement **down to 1.7%** (2.0%) in Barrel (Endcap) - reduced uncertainties

CMS-HIG-23-014

Annapaola de Cosa -ETHZ

0.75

$H \rightarrow \gamma \gamma$ Measurement

Results in agreement with SM expectation

$$\sigma_{fid} = 78 \pm 11(\text{stat})^{+6}_{-5}(\text{syst}) = 78^{+13}_{-12}\text{fb}$$

- **Differential results** provided as a function of **p**_T^H, **y**_H, **N**_{jets}
- **Results dominated by the statistical uncertainties**
- Within systematics, **photon energy scale and resolution** dominate
- Room for improvement with more Run 3 data

Systematic uncertainty	Magnitude
Photon energy scale and resolution group	+5.8%/-4.9%
Category migration from energy resolution	+3.5%/-3.9%
Integrated luminosity	$\pm 1.4\%$
Photon preselection efficiency	$\pm 1.4\%$
Energy scale non-linearity	+0.8%/-1.6%
Photon identification efficiency	$\pm 1.0\%$
Pileup reweighting	$\pm 0.8\%$

CMS *Preliminary* 34.7 fb⁻¹ (13.6 TeV) (da) ¹⁰²/μ¹ (fb/GeV) p-value (MadGraph NNLOPS) = 0.06 ggH (MadGraph5_aMC@NLO + NNLOPS + Pythia) + xH gH (MadGraph5_aMC@NLO + Pythia) + xH NHEG + Pythia) + xH VH + VBF (MadGraph5_aMC@NLO + Pythia Δđ Systematic uncertain 10- 10^{-2} 300 400 500 100 200 p_T^H (GeV)

H→ZZ Measurement

Measurement of inclusive and differential fiducial cross section

- Clean final state topology. Precise invariant mass reconstruction
- Strategy similar to Full Run 2 result
- 2022 data used: **34.7 fb**-1
- Results given as a function of lepton flavour, and \sqrt{s}
 - Sensitivity dominated by muon channel
- Some systematic uncertainties are statistically driven:
 - e.g. trigger and lepton reco. efficiencies, syst. unc on reducible backgrounds derived from control samples

Results in agreement with SM expectation

$$\sigma_{fid} = 2.9 \pm ^{+0.53}_{-0.49} (\text{stat})^{+0.29}_{-0.22} (\text{syst})$$

2e2µ (fb)
4µ (fb)
4e (fb)
Inclusive (fb)

<u>CMS-HIG-24-013</u>

Top in Run 3

Early measurement: 1.21 fb-1 of 2022 data

- Combined analysis: dilepton $(e\mu, ee, \mu\mu)$ & lepton + jets channels
- **Event categories:** lepton number & flavour, N_{jets}, N_b
- Maximum likelihood fit performed in event categories after Z+jets and QCD normalisation corrections from side-band regions
 - In-situ Lepton ID & b-tagging efficiency estimation enables syst. unc. reduction
- Cross-check cut-and-count analysis confirms results

Results in agreement with SM expectation

 $\sigma_{t\bar{t}} = 8.81 \pm 23(\text{stat} + \text{syst}) \pm 20(\text{lumi})$

CMS-TOP-22-012

tW at 13.6 TeV

First inclusive and differential tW cross section measurement at 13.6 TeV using 34.7 fb⁻¹

- Challenges: Irreducible tt background largely dominating signal contribution
 - NLO interference between tW and tt
- tW and tt discrimination achieved by using two Random Forests, RF (*) categories. RF trained using the kinematic properties of the events
 - Maximum Likelihood fit performed to extract signal using the 2 RFs (1j1b and 2j1b) and subleading jet p_T in 2j2b

Annapaola de Cosa -ETHZ

CMS-TOP-23-008

Differential measurements statistically limited

Main syst. unc. from jet energy scale, btagging and misidentified leptons normalization

(*) An RF classifier is a ML method that combines predictions of multiple decision trees to reach a single result

BPhysics in Run 3

Search for rare charm decays into 2 µ at 13.6 TeV with 64.5 fb⁻¹ of data

- Newly developed low-mass double muon parking trigger made possible first BR measurement: low threshold (4GeV and 3 GeV muon p_T) and high rate
 - **35% improvement** wrt world best measurement from LHCb
- Signal extracted from cascade decay $D^{*+} \rightarrow D^0 \pi^+$
 - 2D Max.Like. fir to m_{D^0} and $\Delta m = m(D^{*+}) m(D^0)$
 - BR estimated wrt $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow \pi^+ \pi^-$
- **Displaced D⁰ vertex most discriminative variable** against combinatorial bkg
- **Major uncertainties** from $D^0 \rightarrow \pi^+ \pi^-$ normalisation and misidentification rate

$$BR(D^0 \to \mu\mu) < 2.6 \times 10^{-9} at 95\% CL$$

CMS-BPH-23-008

LLPs to displaced jets in Run 3

Long Lived Particles to dispaced jet pairs

- Novel displaced-jet trigger + reconstruction + Graph-NN LLP taggers (displaced/prompt GNN)
 - Outperforming (x10) full Run 2 result with fraction of Run 3 data
 - First limits on (tracker-based) displaced LLP τ_h channel at LHC
- Best limits set for $15 < m_S < 55$ GeV and $c\tau < 1$ m

CMS-EXO-23-013

LLPs to displaced µ pairs in Run 3

Dark Higgs (H_D) decaying to LL dark photons (Z_D)

- New dedicated displaced-dimuons trigger using tracker+ muon stations
 - lower pT threshold and no beam spot constraint at L1
- Two categories based on μ reconstruction:
 - using both tracker and muon spectrometer (TMS)
 - standalone muon spectrometer (STA)
- Partial Run 3 (36.6 fb⁻¹) result competitive with Run 2 (97.6 fb⁻¹)
- Run 3 analysis better for length > 100 cm for various ZD masses

Annapaola de Cosa -ETHZ

Dominant uncertainties from data to MC corrections from muon identification, muon reconstruction and trigger efficiencies

<u>CMS-EXO-23-014</u>

HL-LHC plans

Planning for 3 ab⁻¹ of pp collisions

- pp collisions at $\sqrt{s} = 14$ TeV
 - Significant cross section increase for massive final states
- 20 times more int.luminosity than Run 2
- Huge statistical power for heavy particles
 - and access to rare processes ~5x10⁵ 4tops
 - exotic Higgs decays down to BR ~ 10^{-5} 10^{-6}

Annapaola de Cosa -ETHZ

Exploration at both energy and intensity frontier

HL-LHC plans

New challenges

- High data acquisition rates (**inst. lumi 5 to 7x** nominal values)
- More complex event reconstruction PU: from 34 (Run 2) to 200 (HL)
- **High radiation doses**

Trigger/DAQ

L1 rate: 750 kHz HLT rate: 7.5 kHz Tracking at L1

Inner Tracker

New higher resolution tracker Extended η coverage **Reduce material budget**

Endcap calorimeters

New high-granularity calorimeter

Timing detector

New MIP precision timing detector for pileup mitigation

Muon detector

Extended η coverage

Annapaola de Cosa -ETHZ

Detector upgrades to cope with harsher environment

R&D in trigger, software and computing

- Exploitation of AI/ML techniques online and offline
- Heterogeneous computing technologies

HL-LHC Projections

Method

- Run 2 results extrapolated to **3 ab⁻¹** and to 14 TeV
- Based on simulations (often uses) simplified detectors simulation)
- No specific upgraded detector model or special assumptions on PU

Studies presented here from:

- Yellow Report 2019
- Snowmass 2021
- New/Updated studies underway to be released in the upcoming months

Systematic uncertainties scenarios

- Scenario 1: same uncert. as measured in Run 2
- Scenario 2: syst. scale down with luminosity (for data-driven syst.) down to a floor. Theoretical unc. are halved assuming progress in calculations

Diving into the Higgs potential

HL-LHC will enable preciser measurement of Higgs potential (largely unconstrained so far)

Key to:

- Understand EW phase transition in early universe
- Determines vacuum stability

Sketch from G. Salam (2022)

$$\lambda_3^{SM} = \lambda_4^{SM} = \frac{m_H^2}{2\nu^2}$$

Higgs mass

- **Current state** (Run 2 $H \rightarrow 4I$) limited by statistics:
 - $m_{\rm H} = 125.26 \pm 0.20 \ (stat) \pm 0.08 \ (syst) \ {\rm GeV}$
 - $\Gamma_{\rm H} < 0.41(1.10) \text{ GeV}$ at 68(95)%CL
- **HL-LHC** Projections based on Run 2 results (*pessimistic*) uncertainties scenario)
 - $m_{\rm H} = 125.38 \pm 0.022 \ (stat) \pm 0.020 \ (syst) \ {\rm GeV}$
 - $\Gamma_{\rm H} < 0.09(0.18) \; {\rm GeV}$

improved mass resolution (25%)

CMS-PAS-FTR-21-007

Higgs self-coupling

HL flagship measurement: di-Higgs production

- HH xsec ~1000 lower than single H
- Recent HL-LHC projections based on Run 2 search m with respect to 2018 YR
 - Expect observation from combined ATLAS and CN

Yellow Report 2019

				Statistic	al-only	Statistical + Syster		
				ATLAS	CMS	ATLAS	CMS	
		$HH \rightarrow$	$b\overline{b}b\overline{b}$	1.4	1.2	0.61	0.95	
	1	$HH \rightarrow$	$bar{b} au au$	2.5	1.6	2.1	1.4	
nuch improved		$HH \rightarrow$	$b \overline{b} \gamma \gamma$	2.1	1.8	2.0	1.8	
	1	$HH \rightarrow$	$b\bar{b}VV(ll u u)$	-	0.59	-	0.56	
	1	$HH \rightarrow$	$b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
	C	combin	ed	3.5	2.8	3.0	2.6	
MS results				Comb	ined	Cor	nbinea	
				4.5	5		4.0	
CIN2-	-HIG-20-011 —						1	
		Sign	ificance (σ) at 2	$2000{ m fb}^{-1}$	Signifi	icance (σ) af	$3000\mathrm{fb}^{-}$	
		S2	Stat. or	ıly	S2	Stat. o	nly	
	$b\overline{b}b\overline{b}$ resolved jets	1.0	1.3		1.4	1.6		
I4 TeV)	$b\overline{b}b\overline{b}$ merged jets	1.7	1.7		2.0	2.1		
	$b\overline{b} au au$	1.7	1.9		2.1	2.3		
	bbWW	0.6	0.8		0.7	0.9		
	$b\overline{b}\gamma\gamma$	1.8	1.9		2.2	2.3		
	Combination	3.2	3.6		3.8	4.3		
					A STATE OF A			

Higgs self-coupling

- HH ~1000x more rare than single H
- with respect to 2018 YR

<u>CMS-HIG-20-011</u>

from new tracker

Most Higgs couplings expected to be known to a few percent, including $H \rightarrow \mu \mu$ (testing origin of 2nd generation masses)

- $H \rightarrow \mu\mu$ discovery expected by end-of-Run3/Run4.
- High precision measurement in Run 5 (**3.5 4.3 % unc. on** k_{μ})

Annapaola de Cosa -ETHZ

<u>CMS-PAS-FTR-21-006</u>

 \sqrt{s} = 14 TeV, 3000 fb⁻¹ per experiment

- **30 -35% improvement due to upgraded** detector (improved mass resolution and increased forward acceptances, $|\eta| < 2.4 \rightarrow |\eta| < 2.8$
 - and 50-60% improvement wrt extrapolations from Run1

4 tops production: rare process sensitive to BSM Physics

- Projections from ATLAS (based on first Run 2 results): ~15% precision on cross section
 - syst. unc starting to dominate ~500 fb⁻¹
 - 4.2 (6.4) σ expected with 3ab⁻¹ for more pessimistic (optimistic) scenario

Expectations already superseded by latest Run 2 Results:

- Observation of 4 tops production announced by CMS (5.5σ) and ATLAS (6.1 σ) already in 2023
 - Thanks to improvements in identification techniques and data analysis strategy (large use of ML) (bringing observed significance from 2.6 to 5.5 σ)

<u>ATLAS-PHYS-PUB-2022-004</u>

New massive resonances to H boson pairs

Searches for Long Lived Particles (LLPs) decaying far from the interaction point gain significantly from upgraded detector systems

- A variety of displaced signatures arise from several BSM scenarios:
 - Displaced hadron jets and missing momentum from gluino R-hadron pair production
 - Displaced collimated muon jets from dark photon decays

Gluino R-hadron decay search will gain from upgraded tracker

Annapaola de Cosa -ETHZ

Summary

- - New trigger strategies and AI/ML techniques as a boost to detector capabilities
 - Unconventional signatures search programme much expanded (e.g. LLP)
- - Enabling precise measurements and rare processes searches
- - Run 3 developments not yet included
 - Huge potential from technical developments in next ~15 years

Our creativity can further push HL-LHC potential

Run 3: huge advancements in trigger, reconstruction and analysis techniques

HL-LHC will further expand physics reach (despite challenging environment)

Run 2 analysis improvements reflected in improved HL-LHC predictions

Additional material

Annapaola de Cosa -ETHZ

Higgs Mass

- Optimistic scenario: Halved dominant syst uncertainties (lepton scale and resolution)
- Pessimistic scenario: doubling bkg syst unc taking into account possible pileup impact on lepton identification

Systematic uncertainty	Baseline	Optimistic	Pessimistic	YR
Muon momentum scale	0.01%	0.005%	0.01%	0.05%
Electron momentum scale	0.15%	0.05%	0.15%	0.10-0.30%
Lepton momentum resolution	10%	5%	10%	5%

$m_{4\ell}$ expected uncertainty (MeV)	inclusive	4μ	4e	2e2µ	2µ2e						
Opt	imistic										
Total	26	30	105	60	67	Γ	expected upper li	mit (MeV)	Projection	Optimistic	Pessi
Syst impact	16	11	64	31	32	<u> </u>	Total		177	<u> </u>	1
Stat only	22	28	83	51	59		Cruct image of		177	100	1
Pess	imistic	1					Syst impact		150	125	1
Total	30	32	206	107	112		Stat only			94	
Syst impact	20	15	189	94	95						
Stat only	22	28	83	51	59						

CMS-PAS-FTR-21-007

Offline vs Scouting

rigger at HL-LHC

CMS detector Peak (PU)

L1 accept rate (maximum) Event Size at HLT input Event Network throughput Event Network buffer (60s) HLT accept rate HLT computing power^b Event Size at HLT output ^c Storage throughput ^d Storage throughput (Heavy-Ion) Storage capacity needed (1 day ^e)

LHC	HL-LHC						
Phase-1	Phase-2						
60	140	200					
100 kHz	500 kHz	750 kHz					
2.0 MB ^a	6.1 MB	8.4 MB					
1.6 Tb/s	24 Tb/s	51 Tb/s					
12 TB	182 TB	379 TB					
1 kHz	5 kHz	$7.5\mathrm{kHz}$					
0.7 MHS06	17 MHS06	37 MHS06					
1.4 MB	4.3 MB	5.9 MB					
2 GB/s	24 GB/s	51 GB/s					
12 GB/s	51 GB/s	51 GB/s					
0.2 PB	1.6 PB	3.3 PB					

14 TeV cross sections

14 TeV / 13 TeV inclusive pp cross section ratio

Annapaola de Cosa -ETHZ

A. Hoecker

5.3

MonoZ search for DN

- Expected sensitivity pushed to large DM mass and lower couplings

Sensitivity to mediator masses expected to improve by ~ factor of 2 relative to current LHC results

