Precision at Future Colliders

Giuliano Panico

Università di Firenze and INFN Firenze

ZPW 2025 — Zurich — 6/1/2025

Fundamental physics at colliders

The main goal of the collider program is to deepen our knowledge of fundamental physics

In practical terms, this means **<u>testing the SM</u>**

looking for its possible failures ----- evidence of New Physics (BSM)

Testing the SM

<u>Complementarity</u>

using different strategies to test the SM predictions and to cover different types of new physics

- direct vs indirect searches
- different collider types (eg. e^+e^- vs hh, low-energy vs high-energy, ...)
- ▶ ...

Testing the SM

<u>Complementarity</u>

using different strategies to test the SM predictions and to cover different types of new physics

- direct vs indirect searches
- different collider types (eg. e^+e^- vs hh, low-energy vs high-energy, ...)
- ▶ ...

<u>Optimality</u>

improve and optimize the new-physics probes to achieve better sensitivity

Testing the SM

<u>Complementarity</u>

using different strategies to test the SM predictions and to cover different types of new physics

- direct vs indirect searches
- different collider types (eg. e^+e^- vs hh, low-energy vs high-energy, ...)
- ▶ ...

<u>Optimality</u>

improve and optimize the new-physics probes to achieve better sensitivity

HL-LHC and future colliders will provide a huge amount of data

Fine details of the SM can be tested with high precision

How to look for new physics

Direct searches:

look for signals of production of new particles

- resonant effects in kinematic distributions
- "bump" on top of a smooth SM background (that can be often extracted from the data)

How to look for new physics

Direct searches:

look for signals of production of new particles

- resonant effects in kinematic distributions
- ''bump'' on top of a smooth SM background (that can be often extracted from the data)

Limitations:

- new particle must be resonantly produced and must decay to reconstructable final state
- limited by collider energy range

How to look for new physics

Direct searches:

look for signals of production of new particles

- resonant effects in kinematic distributions
- "bump" on top of a smooth SM background (that can be often extracted from the data)

Looking for the tail: Indirect searches

even if we can not directly produce the new particles, we can test their **indirect effects**

 LEP data at 200 GeV tested new particles with masses up to 3 TeV !

Tails are "universal"

Indirect searches have important advantages

"universality"

- deviations from SM exhibit small number of behaviors dictated by symmetries
- simple parametrization in terms of EFT operators

"model independence"

• captures a huge class of new-physics models

"ubiquity"

- deviations are present also in channels with non-resonant new physics production
- can often be seen also in channels where the final state can not be fully reconstructed

The challenges of indirect searches

Performing indirect searches is a challenging task that requires several key ingredients

 Accurate theoretical knowledge of the SM and BSM predictions (i.e. small theoretical systematic uncertainty)

----> needed to compare theoretical expectation with the experimental data

Accurate experimental measurements

 (i.e. small experimental systematic and statistical uncertainty)

----> in many cases we expect small deviations with respect to the SM

• Use of effective search strategies and optimized statistical analysis

Precision EW measurements at Lepton Colliders

Precision measurements at lepton colliders have a long and successful history

example: oblique parameters at LEP

◆ 0.1% precision possible thanks to very low systematic errors

Precision measurements at lepton colliders have a long and successful history

example: oblique parameters at LEP

- ♦ 0.1% precision possible thanks to very low systematic errors
- ♦ can probe new physics at the TeV scale

Future e⁺e⁻ lepton colliders can significantly improve the reach H Consistency of electroweak precision data

◆ Bounds on oblique paran Retergen will the paraneter of magnitude stronger, projections

Indirect probes of new physics can test high energy scales

HL-LHC : $\Lambda \sim 10 \text{ TeV}$

ILC - CepC : $\Lambda \sim 20 \text{ TeV}$

FCC_{ee}: $\Lambda \sim 30 \text{ TeV}$

10

0.32

32.

10²

10

۸/ √c_/ [TeV]

Precision at lepton colliders

Indirect probes of new physics can test high energy scales HL-LHC : $\Lambda \sim 10 \text{ TeV}$ ILC - CepC : $\Lambda \sim 20 \text{ TeV}$ FCC_{ee} : $\Lambda \sim 30 \text{ TeV}$ MuC_{10TeV} : $\Lambda \sim 50 - 100 \text{ TeV}$

HEP_{fit} ■ HL-LHC

10

■ HL+MuC_{3 TeV-1 ab⁻¹} ■ HL+MuC_{3 TeV-2 ab⁻¹} ■ HL+MuC_{10 TeV}

68% probability bounds on \mathcal{L}_{SILH}

Precision vs direct searches

Precision measurements are competitive with direct detection reach

 $\chi \sim (1, n,$

Example: Minimal/Accidental dark matter

New EW multiplets at the TeV scale

- accidentally stable (no renormalizable x SM SM interactions)
- viable DM candidates

$\chi / m_{\chi} [\text{TeV}]$	DM
$(1,2,1/2)_{\rm DF}^*$	1.1
$(1,3,\epsilon)_{\rm CS}$	1.6
$(1,3,\epsilon)_{\mathrm{DF}}$	2.0
$(1,3,0)^{**}_{\rm MF}$	2.8
$(1,5,\epsilon)_{\rm CS}$	6.6
$(1,5,\epsilon)_{\mathrm{DF}}$	6.6
$(1,5,0)^{***}_{\rm MF}$	14
$(1,7,\epsilon)_{\rm CS}$	16
$(1,7,\epsilon)_{\mathrm{DF}}$	16

RS = Real Scalar $T_p \downarrow \gtrsim 10^{34}$ CS = Complex Scalar $T_p \downarrow \approx 10^{34}$ MF = Majorana Fermion** Wino DMDF = Dirac Fermion*** Minimal DM

 $\lambda = 0$

[Cirelli, Fornengo, Strumia '05; ... Del Nobile, Nardecchia, Panci '15; Di Luzio, Gröber et al (15, SM · S Mitridate, Redi et al. '17]

 $\lambda \ \chi \cdot (\text{SM particle}) \cdot$

 $\lambda \ll 1$

\mathcal{O}_6	=	$\frac{c_6}{\Lambda_{\rm eff}^2} q$

 $\tau_p \gtrsim 10^{34} \text{ yr} \longrightarrow \Lambda_{\text{eff}}$

 $\tau_p \gtrsim 10^{34} \text{ yr} \longrightarrow \Lambda_{\text{eff}} \gtrsim$

*** Minimal DM $\mathcal{O}_5 = \frac{c_5}{\text{Figure 1}} \ell \ell$ $m_{\nu} \sim 0.1 \text{ eV} \longrightarrow indicated$

Minimal dark matter

- + Universal corrections to $2 \rightarrow 2$ fermion scattering
- ✦ Testable deviations in angular distributions

[Harigaya et al. '15; Matsumoto et al. '17; Di Luzio, Gröber, GP '18]

Indirect probes can extend direct detection reach for large multiplets at CLIC

Minimal dark matter

- + Universal corrections to $2 \rightarrow 2$ fermion scattering
- ✦ Testable deviations in angular distributions

Accidental Dark Matter @ CLIC

direct searches

[Harigaya et al. '15; Matsumoto et al. '17; Di Luzio, Gröber, GP '18]

Indirect probes can extend direct detection reach for large multiplets at CLIC

Precision EW measurements at Hadron Colliders

Precision at hadron colliders

New ideas allow us to exploit also hadron colliders!

 sizeable systematic errors in many cases do not allow for pole precision measurements

Precision at hadron colliders

New ideas allow us to exploit also hadron colliders!

- sizeable systematic errors in many cases do not allow for pole precision measurements
- however we can exploit the high energy reach

[Farina, GP, Pappadopulo, Ruderman, Torre, Wulzer ' I 6]

Precision at hadron colliders

New ideas allow us to exploit also **hadron colliders!**

- sizeable systematic errors in many cases do not allow for pole precision measurements
- however we can exploit the high energy reach

energy helps accuracy!

key point: deviations from SM typically grow with energy

$$\frac{\mathcal{A}_{\rm SM+BSM}}{\mathcal{A}_{\rm SM}} \sim 1 + \# \frac{E^2}{\Lambda^2}$$

→ LHC can match LEP sensitivity exploiting the **high energy** reach 0.1 % at 100 GeV → 10 % at 1 TeV LEP energy LHC energy

Proof of Principle: Di-lepton DY

Drell-Yan production ($\ell^+\ell^-$ or $\ell\nu$)

- large cross section —> good statistics
- small theory and exp. systematic uncertainty

Proof of Principle: Di-lepton DY

Drell-Yan production ($\ell^+\ell^-$ or $\ell\nu$)

- large cross section —> good statistics
- small theory and exp. systematic uncertainty

Simple BSM effects: **oblique parameters**

Deformation of the gauge propagators from dimension-6 operators

$$\frac{gg'\hat{S}}{16m_{\rm W}^2}(H^{\dagger}\sigma^a H)W^a_{\mu\nu}B^{\mu\nu} - \frac{g^2\hat{T}}{2m_{\rm W}^2}|H^{\dagger}D_{\mu}H|^2 - \frac{W}{4m_{\rm W}^2}(D_{\rho}W^a_{\mu\nu})^2 - \frac{Y}{4m_{\rm W}^2}(\partial_{\rho}B_{\mu\nu})^2$$

---> LEP bounds at the 0.1% level

Proof of Principle: Di-lepton DY

Drell-Yan production ($\ell^+\ell^-$ or $\ell\nu$)

- large cross section —> good statistics
- small theory and exp. systematic uncertainty

Simple BSM effects: oblique parameters

Deformation of the gauge propagators from dimension-6 operators

- LHC can significantly surpass LEP sensitivity on W and Y!
 - ▶ 8 TeV runs competitive with LEP

- LHC can significantly surpass LEP sensitivity on W and Y!
 - ▶ 8 TeV runs competitive with LEP
 - high-luminosity 13 TeV will improve the bounds by one order of magnitude

- LHC can significantly surpass LEP sensitivity on W and Y!
 - ▶ 8 TeV runs competitive with LEP
 - high-luminosity 13 TeV will improve the bounds by one order of magnitude

- LHC can significantly surpass LEP sensitivity on W and Y!
 - ▶ 8 TeV runs competitive with LEP
 - high-luminosity 13 TeV will improve the bounds by one order of magnitude
- Future high-energy hadron colliders can tighten further the bounds
 - ► FCC₁₀₀ can reach 10⁻⁵ precision

Comparison with future colliders

Bounds on W and Y at different colliders

	LEP	LHC	C 13	FCC 100	ILC	TLEP	CEPC	ILC 500	CLIC 1	CLIC 3
luminosity	$2 \times 10^7 Z$	0.3/ab	3/ab	10/ab	$10^9 Z$	$10^{12} Z$	$10^{10} Z$	3/ab	1/ab	1/ab
W $\times 10^4$	[-19, 3]	± 0.7	± 0.45	± 0.02	± 4.2	± 1.2	± 3.6	± 0.3	± 0.5	± 0.15
$Y \times 10^4$	[-17, 4]	± 2.3	±1.2	± 0.06	±1.8	± 1.5	± 3.1	± 0.2	$\sim \pm 0.5$	$\sim \pm 0.15$

✦ HL-LHC comparable with TLEP

◆ FCC100 much better than ILC 500 GeV and CLIC 3 TeV

Testing the Higgs dynamics

To test the Higgs dynamics we need to probe additional channels

Testing the Higgs dynamics

To test the Higgs dynamics we need to probe additional channels

♦ di-boson production can probe deviations in the Higgs couplings

$$\begin{array}{c} {}^{q} & \stackrel{\langle H \rangle}{\longrightarrow} & \stackrel{\langle H \rangle}{\longrightarrow} & V_{\mu} \\ \hline {}_{\bar{q}} & \stackrel{\langle H \rangle}{\longrightarrow} & V_{\mu} \end{array} \end{array} \begin{bmatrix} \mathcal{O}_{W} = (H^{\dagger} \sigma^{i} \overleftrightarrow{D}_{\mu} H) (D^{\nu} W_{\mu\nu})^{i} \\ \mathcal{O}_{HW} = (D_{\mu} H)^{\dagger} \sigma^{i} (D^{\nu} H) W^{i}_{\mu\nu} \end{bmatrix}$$

More challenging than di-lepton

- energy-growing new physics effects confined to subleading helicity channels (longitudinal) (--> interference resurrection via differential measurements)
- ▶ more complex final states

... but more interesting ----> can be used to test a larger set of BSM theories

WZ production: LHC

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^\dagger\sigma^a\overleftrightarrow{D}_\mu H)$

[Franceschini, GP, Pomarol, Riva, Wulzer '17]

- ♦ Non-trivial analysis: longitudinal channels small →> exploit transverse zeroes
- ♦ Big improvement with respect to LEP

WZ production: Future colliders

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^{\dagger}\sigma^a\overleftrightarrow{D}_{\mu}H)$

- ✦ additional improvement possible at future colliders
- ♦ reach at FCC-hh comparable with CLIC see [Ellis, Roloff, Sanz, You '17]

High luminosity and rare channels

High luminosity and rare channels

Example: VH production

Different decay channels:

• $H \rightarrow \gamma \gamma$ \rightarrow tiny cross section (only accessible at FCC-hh), but very clean

VH at FCC-hh

[Bishara, Englert et al. '22]

- ♦ VH(→ bb) and VH(→ γγ) provide similar sensitivity
- ✦ Bounds competitive with WZ

VH at FCC-hh

[Bishara, Englert et al. '22]

- ♦ VH(→ bb) and VH(→ γγ) provide similar sensitivity
- ✤ Bounds competitive with WZ

VH at FCC-hh

[Bishara, De Curtis et al. '20]

FCC-hh can match (or surpass) sensitivity at e⁺e⁻ colliders

Higgs "pole" measurements

Low-energy e⁺e⁻ colliders can test several Higgs "pole" properties

88.000		
Coupling	HL-LHC	FCC-ee $(240-365 \text{GeV})$ 2 IPs / 4 IPs
κ_W [%]	1.5^{*}	$0.43 \ / \ 0.33$
$\kappa_Z[\%]$	1.3^{*}	0.17 / 0.14
$\kappa_{g}[\%]$	2^*	0.90 / 0.77
κ_{γ} [%]	1.6^{*}	1.3 / 1.2
$\kappa_{Z\gamma}$ [%]	10^{*}	10 / 10
κ_c [%]	—	1.3 / 1.1
$\kappa_t [\%]$	3.2^{*}	3.1 / 3.1
$\kappa_b [\%]$	2.5^{*}	$0.64 \ / \ 0.56$
κ_{μ} [%]	4.4*	3.9 / 3.7
$\kappa_{ au}$ [%]	1.6^{*}	$0.66 \ / \ 0.55$
$BR_{inv} (<\%, 95\% CL)$	1.9^{*}	$0.20 \ / \ 0.15$
$BR_{unt} (<\%, 95\% CL)$	4*	1.0 / 0.88

Higgs coupling sensitivity

[Table from mid-term report, from C. Grojean, Corfu '24]

- Model-independent measurement of $\lim_{N \to \infty} \delta$ ar Higgs couplings
- Significant improvement with respect to HL-LHC in $g_{HZZ}^{eff}, g_{HWW}^{eff}, g_{Hgg}^{eff}, g_{Hbb}^{eff}, g_{Hcc}^{eff}, g_{H\tau\tau}^{eff}$

$$w^2/f^2$$
 & $m_{\rm NP} = g_{\rm NP}f)$

 $\sim 3\,{
m MeV}$

111999 of abitute possibility					
Coupling	HL-LHC	FCC-ee $(240-365\mathrm{GeV})$			
		2 IPs / 4 IPs			
κ_W [%]	1.5^{*}	$0.43 \ / \ 0.33$			
$\kappa_Z[\%]$	1.3^{*}	0.17 / 0.14			
$\kappa_{g}[\%]$	2^*	$0.90 \ / \ 0.77$			
κ_{γ} [%]	1.6^{*}	1.3 / 1.2 -			
$\kappa_{Z\gamma}$ [%]	10^{*}	10 / 10			
κ_c [%]	—	1.3 / 1.1			
κ_t [%]	3.2^{*}	3.1 / 3.1			
κ_b [%]	2.5^{*}	$0.64 \ / \ 0.56$			
κ_{μ} [%]	4.4^{*}	3.9 / 3.7			
$\kappa_{ au}$ [%]	1.6^{*}	$0.66 \ / \ 0.55$			
$BR_{inv} (<\%, 95\% CL)$	1.9^{*}	0.20 / 0.15			
BR _{unt} ($<\%$, 95% CL)	4*	1.0 / 0.88			

Higgs counling sensitivity

 $\sim 3\,{
m MeV}$

 v^2/f^2 & $m_{\rm NP} = g_{\rm NP}f$)

[Table from mid-term report from C. Grojean, Corfu '24]

- Model-independent measurement of $\lim_{X \to \infty} \delta_{X}$
- Significant improvement with respect to HL-LHC in g_{HZZ}^{eff} , g_{HWW}^{eff} , g_{Haa}^{eff} , g_{Hbb}^{eff} , g_{Hcc}^{eff} , $g_{H\tau\tau}^{eff}$
- **Exception**: decay channels with low BR

 $g_{H\gamma\gamma}^{eff}, g_{H\mu\mu}^{eff}, g_{HZ\gamma}^{eff}$

Muon collider

A muon collider can improve the determination of some couplings

- improvement in $g_{H\gamma\gamma}^{e\!f\!f}$ (and $g_{HZ\gamma}^{e\!f\!f}$) with IOTeV (and I25GeV) run
- improvement in $g_{H\mu\mu}^{eff}$ with 10 TeV run; excellent determination with 125 GeV run

High-energy hadron collider

High-energy hadron collider

FCC-hh can test $g_{H\gamma\gamma}^{eff}, g_{H\mu\mu}^{eff}, g_{HZ\gamma}^{eff}$ with high precision

FCC-hh can improve the measurement of the top Yukawa $g_{Htt}^{eff} \longrightarrow 1\%$

(improvement also possible at HE-LHC and CLIC 3TeV)

Higgs trilinear coupling

+ HL-LHC can test the Higgs trilinear with O(50%) precision [See Di Micco et al. '19]

 $-0.43 \le \delta \kappa_{\lambda} \le 0.5$ at 68% C.L.

[McCullough '13]

Good sensitivity at low energy in HZ (and $\nu\bar{\nu}H$) channels

Expected precision from I-parameter fit (1 σ bounds)

collider	1-parameter	
CEPC 240	18%	
FCC-ee 240	21%	CECP and FCC-ee
FCC-ee 240/365	21%	provide fair
FCC-ee (4IP)	15%	sensitivity
ILC 250	36%	_
ILC 250/500	32%	
ILC 250/500/1000	29%	
CLIC 380	117%	
CLIC 380/1500	72%	collider CECP 24
CLIC 380/1500/3000	49%	FCC-ee 2 FCC-ee 3

[Di Micco et al. '19]

collider	Full \mathcal{L} [ab ⁻¹]
CECP 240	5.6
FCC-ee 240	5.0
FCC-ee 365	1.5
FCC-ee $(4IP)$	12.0 + 5.5
ILC 250	2.0
ILC 500	4.0
ILC 1000	8.0
CLIC 380	1.0
CLIC 1500	2.5
CLIC 3000	5.0

Expected precision from global fit $(1\sigma \text{ bounds})$

collider	1-parameter	full SMEFT			
CEPC 240	18%	-	•	runs a [.]	t single energy
FCC-ee 240	21%	-		do I signif	not provide
FCC-ee 240/365	21%	44%		5.8.11	
FCC-ee (4IP)	15%	27%			
ILC 250	36%	-	-		
ILC 250/500	32%	58%			
ILC 250/500/1000	29%	52%			
CLIC 380	117%	-	-		
CLIC 380/1500	72%	-	CECF	er 2 240	$\frac{\text{Full } \mathcal{L} [ab^{-1}]}{5.6}$
CLIC 380/1500/3000	49%	-	FCC-e	ee 240 ee 365	5.0
			FCC-	ee (4IP)	12.0 + 5.5

[Di Micco et al. '19]

2.0

4.0

8.0

1.0

2.5

5.0

ILC 250

ILC 500

ILC 1000

CLIC 380

CLIC 1500

CLIC 3000

Expected precision from global fit (1 σ bounds)

collider	1-parameter	full SMEFT	
CEPC 240	18%	-	← runs at single energy
FCC-ee 240	21%	-	do not provide
FCC-ee 240/365	21%	44%	Significante Dourido
FCC-ee (4IP)	15%	27%	
ILC 250	36%	-	determination can
ILC 250/500	32%	58%	reach 27% at FCC-ee
ILC 250/500/1000	29%	52%	points
CLIC 380	117%	-	
CLIC 380/1500	72%	-	$\begin{array}{c c} \hline collider & Full \mathcal{L} [ab^{-1}] \\ \hline CECP 240 & 5.6 \end{array}$
CLIC 380/1500/3000	49%	-	FCC-ee 240 5.0 FCC-ee 365 1.5
[Di Micco et al.'19]			$\frac{\text{FCC-ee (4IP)}}{\text{HCC-ee (4IP)}}$
			$ \begin{array}{c ccccc} & 1LC 250 & 2.0 \\ & 1LC 500 & 4.0 \\ \end{array} $

8.0

 $1.0 \\ 2.5$

5.0

ILC 1000

CLIC 380

CLIC 1500 CLIC 3000

Two main channels ZHH and $\nu\bar{\nu}HH$

Precision reach at ILC and CLIC

Expected precision from HH production channels $(1\sigma \text{ bounds})$

collider	excl. from HH	
HL-LHC	50%	
ILC 500	27%	
ILC 1000	10%	
CLIC 1500	36%	Can reach the 10%
CLIC 3000	[-7%, 11%]	

Muon collider

High-energy muon collider can be competitive with FCC-hh

Conclusions and Outlook

Conclusions and outlook

Precision measurements can provide promising information at HL-LHC and future colliders

- complements direct searches
- ► can extend reach beyond collider energy threshold (eg. e⁺e⁻ machines)

Can be performed both at **lepton** and at **hadron colliders**

Challenging aspects:

- good statistics (especially in the high-energy tails)
- good control on theoretical and experimental systematics

Conclusions and outlook

Crucial aspect: approaching **optimality**

important to fully exploit data and reach maximal sensitivity

Challenging aspects:

- huge amount of data
- information 'hidden' in high-dimensional kinematic distributions
- need for simultaneous fit of several quantities
 (eg. PDF determination together with fit of SMEFT operators)

Promising approaches through machine learning